INTRO TO GROUP REPS - AUGUST 13, 2012 PROBLEM SET 10 RT8. FINITE GROUPS 2

- 1. Let N be a normal subgroup of G, and suppose (π, V) is an irreducible representation of G/N. Recall that if $q: G \to G/N$ is the natural quotient homomorphism, then we obtain a representation (π', V) of G by defining $\pi' = \pi \circ q$. Give three proofs that π' is irreducible.
- 2. Let C_x denote the conjugacy class of x in S_3 . Define e_x in $Class(S_3)$ by

$$e_x(g) = \begin{cases} 1 & g \in C_x \\ 0 & \text{otherwise} \end{cases}$$
.

Express e_e , $e_{(12)}$, and $e_{(123)}$ in terms of the character basis for $Class(S_3)$, and verify Parseval's Identity.

- 3. Explain why the character tables for S_n and D_{2n} always consist of real entries. State a necessary condition for a character table to have non-real entries.
- 4. (a) Let (π, V) be an irreducible unitary representation of G and u, v in V. Prove that

$$\langle \phi_{u,v}, \chi_{\pi} \rangle = \frac{1}{d_{\pi}} \langle u, v \rangle$$

and

$$d_{\pi}\phi_{u,v} * \chi_{\pi} = d_{\pi}\chi_{\pi} * \phi_{u,v} = \phi_{u,v}.$$

- (b) Verify associativity of convolution on $L^2(G)$.
- (c) Verify that f * h = h * f if h is in Class(G). Also verify that f * h is in Class(G) when f, h are.
- 5. Let (π, V) be an irreducible representation of G with dimension greater than 1.
 - (a) If χ_{π} takes only integer values, show that $\chi_{\pi}(g) = 0$ for some g in G.
- (b) This is true in general for irreducible π with dimension greater than 1. Verify for all character tables in the problem sets.
- 6. Let (π, V) be the irreducible representation of S_3 with dimension 2.
 - (a) Determine the irreducible subrepresentations in $\sigma = \pi \otimes \pi$.

Date: August 18, 2012.

- (b) Compute each projection operator $P_{\pi'} = d_{\pi'} \sigma(\overline{\chi_{\pi'}})$.
- (c) Find bases for each subspace of a given irreducible type.
- 7. Let (π, \mathbb{C}^n) be the usual representation of S_n by permuting the standard basis vectors. π decomposes into a trivial type and an irreducible (n-1)-dimensional type. Let $f(\sigma)$ denote the number of elements in $\{1, 2, \ldots, n\}$ fixed by σ .
 - (a) Prove that

$$n! = \sum_{\sigma \in S_n} f(\sigma)$$

and

$$2n! = \sum_{\sigma \in S_n} [f(\sigma)]^2.$$

- (b) Verify for n = 3, 4, 5.
- 8. Suppose G acts on a set X, and let V be the vector space with basis $\{e_x \mid x \in X\}$. Let (π, V) be the permutation representation of G on V. Let f(g) denote the number of elements in X fixed by g.
- (a) Let n_{σ} be the multiplicity of the irreducible type σ in π , and let n_X be the number of orbits in X by G. Prove that

$$\sum_{g \in G} f(g) = n_X |G|.$$

and

$$\sum_{g \in G} [f(g)]^2 = (\sum_{\sigma} n_{\sigma}^2)|G|.$$

- (b) Verify (a) directly for the usual action of D_{2n} on the vertices of a regular *n*-sided polygon. For tables, see Problems 10 in SS7 and SS8.
- 9. Same notation as Problem 7(a). Refer to SS4, Problem 6, and SS5, Problem 3. Using the projection formula $P_{\sigma} = d_{\sigma}\pi(\overline{\chi_{\sigma}})$, extract fixed point formulas from the (i, j)-th entries using both irreducible types.
- 10. Let M_{σ} be the span of the matrix coefficient of the irreducible representation (σ, V_{σ}) . Give another proof of the Plancherel formula

$$\langle f, f \rangle = \sum_{\sigma} d_{\sigma} Trace(\sigma(f)\sigma(f)^*)$$

as follows:

(a) Show that $\sigma(\cdot): L^2(G) \to Hom_{\mathbb{C}}(V_{\sigma}, V_{\sigma})$ is an interwtwining operator between $L \otimes R$ and $\tilde{\sigma}$, where

$$[\tilde{\sigma}(g_1, g_2)]T(v) = \sigma(g_1)T\sigma(g_2^{-1})v.$$

- (b) Explain why $(\tilde{\sigma}, Hom_{\mathbb{C}}(V_{\sigma}, V_{\sigma}))$ is irreducible as a representation of $G \times G$.
- (c) Show that

$$\langle T_1, T_2 \rangle = Trace(T_1T_2^*)$$

is a Hermitian inner product on $Hom_{\mathbb{C}}(V_{\sigma}, V_{\sigma})$ invariant under $G \times G$.

- (d) Apply both cases of Schur's Lemma to obtain the proof. Use $f = \chi_{\sigma}$ to determine scaling factors.
- 11. Suppose that $G = G_1 \times G_2$. If (π, V) (resp. (π', V')) is a representation of G_1 (resp. G_2), we define the outer tensor product representation $(\pi \otimes \pi', V \otimes V')$ on G by linearly extending

$$(\pi \otimes \pi')(g_1, g_2)(v \otimes w) = \pi(g_1)v \otimes \pi'(g_2)w.$$

(a) Prove that (σ, W) is an irreducible representation of G if and only if σ may be expressed as an outer tensor product of irreducible representations of G_1 and G_2 .

(Not intended as a problem, but no convenient place to include the proof. See next Solution Set.)

(b) If (π, \mathbb{C}^n) is an irreducible representation of G_1 , prove that

$$W = Span_{\mathbb{C}}\{\pi(g) \mid g \in G\} = M(n, \mathbb{C}),$$

the set of all $n \times n$ matrices with complex entries.

(c) Verify (b) for the usual representation of D_{2n} on \mathbb{C}^2 .