Lattice path enumeration
 for semi-magic squares of size three

Robert W. Donley, Jr. (CUNY)

November 12, 2021

Table of Contents:

(1) Posets, Rectangular Grids, and Peck Posets
(2) Semi-magic Squares of Size Three
(3) Rectangles
(9) Lattice Path Enumeration in $M(3)$
(5) Clebsch-Gordan Coefficients and Regge Symmetries
arXiv:
Donley (July 2021),
Directed path enumeration for semi-magic squares of size three.

Clebsch-Gordan Coefficients (post-CG)

(1) Clebsch, Gordan: invariant theory, binary forms
(1) Quantum Mechanics
(Schrödinger equation, coupling of angular momentum)
(2) Spherical harmonics: linearization, product rules
(3) Finite-dimensional representations of $S U(2)$: tensor products
(1) Unit vectors \rightarrow probabilities
(2) Hypergeometric series of type ${ }_{3} F_{2}$
(3) Focus on single sums
(c) Semi-magic squares featured

Clebsch-Gordan Coefficients (post-CG)

(1) de-normalize \rightarrow combinatorics
(2) Hexagons as finite-difference tables (Pascal's triangle)
(3) Elementary generating function
(- Hockey stick rules (Pascal's triangle)
(5) General Vandermonde convolution (Pascal's triangle)

Pascal's Triangle

Interpret: lattice path counting from the vertex $\hat{0}$ to the entry

Pascal's Identity

Pascal's Identity

$$
\binom{n}{k}=\binom{n-1}{k}+\binom{n-1}{k-1}
$$

Point: To get an entry in the n-th row, add the two below.
Lattice path counting \rightarrow "up operator"

Partially Ordered Sets

Definition:

A non-empty set P with binary relation \leqslant is called a partially ordered set (poset)
if, for all x, y, z in P, the binary relation \leqslant satisfies the following properties
(1) Reflexive: $\quad x \leqslant x$,
(2) Anti-symmetric: if $x \leqslant y$ and $y \leqslant x$, then $x=y$, and
(3) Transitive: if $x \leqslant y$ and $y \leqslant z$, then $x \leqslant z$.

Finite Graded Posets

(P, \leqslant) finite poset with $\hat{0}$ and $\hat{1}$ (minimum and maximum)
P graded of rank n :
The length of every path from $\hat{0}$ to $\hat{1}$ equals the same n

Rank function $\rho: P \rightarrow\{0,1, \ldots, n\}$

$$
\rho(x)=\text { length of any path from } \hat{0} \text { to } x
$$

Rank numbers

$$
P_{t}=\{x \in P \mid \rho(x)=t\} \quad\left|P_{t}\right|=p_{t}
$$

Finite Graded Posets (Hasse Diagram of P)

$$
\hat{0}=a, \quad \rho(h)=3, \quad P_{3}=\{h, i, j\}, \quad p_{3}=3
$$

The Vector Space for a Finite Graded Poset with $\hat{0}$ and $\hat{1}$

Use elements of P as a basis (any order)

Definition: The vector space $\mathbb{R}[P]$
Let $\mathbb{R}[P]$ be the vector space over \mathbb{R} with formal basis P;
that is, elements of $\mathbb{R}[P]$ are linear combinations

$$
v=\sum_{x \in P} c_{x} x
$$

Definition:

$$
x<y
$$

For x and y in P, we say y covers x if $x \leqslant y$ and no z satisfies $x<z<y$.

The Order-Raising Operator U

Definition:
 $$
U: \mathbb{R}[P] \rightarrow \mathbb{R}[P]
$$

For x in P, linearly extend the map

$$
U x=\sum_{x<y} y, \quad U(\hat{1})=0
$$

Note that $U x$ is the formal sum of all elements of P directly "above" x.
That is, $\left.U\right|_{P_{t}}: \mathbb{R}\left[P_{t}\right] \rightarrow \mathbb{R}\left[P_{t+1}\right]$.
Alternatively, if y is in P_{t+1}, then the coefficient of y in

$$
U\left(\sum_{x \in P} c_{x} x\right)
$$

is the sum of all values c_{x} just "below" y.

The Order-Raising Operator U

Fibonacci Numbers / Catalan Numbers

Clebsch-Gordan Decomposition for $m \times n$ grid

- U is nilpotent:

$$
U^{m+n+1}=0
$$

- Jordan Canonical form: $\lambda=0$
- On rank t, define

$$
H v=(m+n-2 t) v
$$

- H-eigenvalues on $\operatorname{Ker}(U)$:

$$
-|m-n|, \quad-|m-n|+2, \quad \ldots, \quad-m-n-2, \quad-m-n
$$

- complete to $\mathfrak{s l}(2, \mathbb{R})$: there exists a $\left.D\right|_{P_{t}}: P_{t} \rightarrow P_{t-1}$ s.t.

$$
[D, U]=H, \quad[H, D]=2 D, \quad[H, U]=-2 U
$$

Hasse diagrams for $V(N)$ for 2×3 grid

$V(N): U$-cyclic subspace corresponding to H-eigenvalue $-N$,
$V(5)$
$V(3)$
$V(1)$

$$
k=0
$$

$$
k=1
$$

$$
k=2
$$

Weight vectors vs. Weights

Points in rank t : weak compositions (i, j) with 2 parts Rank 3:

$$
-4 x_{(2,1)}+1 x_{(1,2)}+2 x_{(0,3)}
$$

Five Parameters and Uniform Formula

Parameters:

$$
M: \quad m \times n, \quad m+n-2 k, \quad(i, j)
$$

Un-normalized Clebsch-Gordan coefficent

$$
C(M)=\sum_{t}(-1)^{t}\binom{i+j-k}{i-t}\binom{m-t}{k-t}\binom{n-k+t}{t} .
$$

Generating function
$C(M)$ is the coefficient of $x^{j} y^{i}$ in

$$
\frac{(x+y)^{i+j-k}}{(1-x)^{m-k+1}(1+y)^{n-k+1}}
$$

Clebsch-Gordan Coefficients

Peck poset: a f.g. poset with $\hat{0}$ and $\hat{1}$ and $\mathfrak{s l}(2, \mathbb{R})$ action.
(80s: Stanley, Proctor; later, also Robert G. Donnelly)
Rectangular grid: automatically carries action through tensor product:
$V(N)$: irreducible representation of $\mathfrak{s l}(2, \mathbb{R})$ of highest weight $N \geqslant 0$ ϕ_{N} certain highest weight vector for $V(N)$

$$
C(M)=c_{m, n, k}(i, j)
$$

$$
\begin{gathered}
V(m+n-2 k) \subseteq V(m) \otimes V(n) \\
f^{t-k} \phi_{m+n-2 k}=\sum_{i+j=t} c_{m, n, k}(i, j) f^{i} \phi_{m} \otimes f^{j} \phi_{n}
\end{gathered}
$$

Summation Formulas

$$
C(M)=\sum_{t}(-1)^{t}\binom{i+j-k}{i-t}\binom{m-t}{k-t}\binom{n-k+t}{t} .
$$

Formulas of this type (normalized): Wigner, Majumdar, Racah See, for instance, Vilenkin, "Special Functions...", 1968.

$$
\rightarrow \quad M=\left[\begin{array}{ccc}
n-k & m-k & k \\
i & j & m^{\prime} \\
m-i & n-j & i+j-k
\end{array}\right]
$$

M is semi-magic with line sum $m+n-k$

Semi-Magic Squares of Size 3

A square matrix is called a semi-magic square if
(1) entries are integers $\geqslant 0$, and
(2) the sum along any row or column is equal to the same number L.
L is called the line sum of M.

Example: Let $M(3)$ be the monoid of all semi-magic squares of size 3 .

$$
M=\left(\begin{array}{lll}
3 & 2 & 4 \\
5 & 3 & 1 \\
1 & 4 & 4
\end{array}\right), \quad L=9
$$

Examples: $L=1$

A permutation matrix is a square matrix such that there is exactly one 1 in each row and column.

$$
\begin{aligned}
& P_{1}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right), \quad P_{2}=\left(\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right), \quad P_{3}=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right), \\
& P_{4}=\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right), \quad P_{5}=\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right), \quad P_{6}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right) .
\end{aligned}
$$

Algebra for Semi-Magic Squares

1) If $k \geqslant 0$ and M, N are semi-magic squares, so are

$$
k M, \quad M+N
$$

with line sums $k L_{M}$ and $L_{M}+L_{N}$, respectively.
2) Any linear combination with $a_{i} \geqslant 0$ integers

$$
a_{1} P_{1}+\cdots+a_{6} P_{6}
$$

is a semi-magic square with line sum $a_{1}+\cdots+a_{6}$.
3) Birkhoff-Von Neumann:

Semi-magic squares of any size may be written as an integral sum of permutation matrices.

Linearly Independent? No.

Solve:

$$
\sum a_{i} P_{i}=\left(\begin{array}{lll}
a_{1}+a_{6} & a_{3}+a_{5} & a_{2}+a_{4} \\
a_{2}+a_{5} & a_{1}+a_{4} & a_{3}+a_{6} \\
a_{3}+a_{4} & a_{2}+a_{6} & a_{1}+a_{5}
\end{array}\right)=0
$$

Dependence relation:

$$
P_{1}+P_{2}+P_{3}=P_{4}+P_{5}+P_{6}=J
$$

or

$$
\begin{aligned}
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)+\left(\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)+\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right) & =\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right)+\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)+\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right) \\
& =\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right)
\end{aligned}
$$

Rectangles

Every semi-magic square M can be represented by a rectangle:

$$
M \quad \mathbf{a}=\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}\right) \leftrightarrow \leftrightarrow \begin{array}{|l|l|l|}
\hline a_{1} & a_{2} & a_{3} \\
\hline a_{4} & a_{5} & a_{6} \\
\hline
\end{array}
$$

Here the single relation takes the form

1	1	1				
0	0	0	$=$	0	0	0
:---	:---	:---				
1	1	1	.			

By repeatedly shifting up, uniquely represented if one of a_{4}, a_{5}, a_{6} is zero.
Note: line sum $L=a_{1}+\cdots+a_{6}$ is unchanged by shifting $1 s$

Counting by Line Sum

Question: How many semi-magic squares are there with fixed line sum L ? (MacMahon 1916)

$$
H_{3}(L)=\binom{L+5}{5}-\binom{L+2}{5}
$$

First term: put L balls in 6 boxes.
Second term: put $L-3$ balls in 6 boxes
Throw away rectangles of the form: $\quad(L-3)+3=L$

a_{1}	a_{2}	a_{3}				
a_{4}	a_{5}	a_{6}	$+$	0	0	0
:---	:---	:---				
1	1	1	.			

Put L balls in k boxes? $L+(k-1)$ choose $k-1$ (assume 1s at ends) $L=5, k=4: \quad \rightarrow \quad 1: 01000101: 1$

Wreath Product $G=S_{3} \imath \mathbb{Z} / 2$

At matrix level, the magic square property and line sum are preserved by
(1) row permutations,
(2) column permutations, and
(3) transpose.

At rectangle level, the effect is to
(1) switch rows
(2) allow permutations in row entries.

1	2	3				
4	5	6	,	1	3	2
:---	:---	:---				
4	5	6	,	4	5	6
:---	:---	:---				
1	2	3	,	6	4	5
:---	:---	:---				
2	3	1	,\ldots			

Lattice Path Counting: Graded Poset M(3)

M(3) forms a graded poset:
Partial ordering (entry-wise for all entries):

$$
\begin{gathered}
M \leqslant N \quad \text { if } \quad m_{i j} \leqslant n_{i j} \\
M \lessdot N \quad \text { if } N=M+P_{i} \text { for some } i
\end{gathered}
$$

Rank function $\rho(M)=L=\sum a_{i}$

$$
\begin{gathered}
\left(\begin{array}{lll}
2 & 1 & 0 \\
1 & 2 & 0 \\
0 & 0 & 3
\end{array}\right) \leqslant\left(\begin{array}{lll}
2 & 4 & 0 \\
1 & 2 & 3 \\
3 & 0 & 3
\end{array}\right) \\
\rho(M)=3 \leqslant 6=\rho(N)
\end{gathered}
$$

$M(3,1)$ as semi-magic squares:
 $\max (M) \leqslant 1$

$M(3,1)$ as rectangles:

Subscript: Number of directed paths from 0 to M

$M(3,2)$ as semi-magic squares: $\max (M) \leqslant 2$

Hasse diagram:
(1) columns go from rank 0 to rank 6,
(2) no covering links for clarity, and
(3) only orbits denoted.

$$
\begin{aligned}
& {\left[\begin{array}{lll}
2 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right]\left[\begin{array}{lll}
2 & 0 & 1 \\
1 & 2 & 0 \\
0 & 1 & 2
\end{array}\right]\left[\begin{array}{lll}
2 & 0 & 2 \\
2 & 2 & 0 \\
0 & 2 & 2
\end{array}\right]} \\
& {\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \quad\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \quad\left[\begin{array}{lll}
1 & 0 & 1 \\
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right] \quad\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right] \quad\left[\begin{array}{lll}
2 & 1 & 1 \\
1 & 2 & 1 \\
1 & 1 & 2
\end{array}\right] \quad\left[\begin{array}{lll}
2 & 1 & 2 \\
2 & 2 & 1 \\
1 & 2 & 2
\end{array}\right]\left[\begin{array}{lll}
2 & 2 & 2 \\
2 & 2 & 2 \\
2 & 2 & 2
\end{array}\right]} \\
& {\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 2 & 0 \\
1 & 0 & 1
\end{array}\right] \quad\left[\begin{array}{lll}
1 & 0 & 2 \\
1 & 2 & 0 \\
1 & 1 & 1
\end{array}\right] \quad\left[\begin{array}{lll}
1 & 2 & 1 \\
1 & 2 & 1 \\
2 & 0 & 2
\end{array}\right]} \\
& \begin{array}{lllllll}
0 & 1 & 2 & 3 & 4 & 5 & 6
\end{array}
\end{aligned}
$$

$M(3,2)$ as rectangles:
$\max (M) \leqslant 2$
Subscripts are:
(1) number of elements in the orbit,
(2) number of directed paths from $\hat{0}$ to M

To get to | 3 | 3 | 3 |
| :--- | :--- | :--- |
| 0 | 0 | 0 |$\quad 94,080$ paths

To get to $\left.\begin{array}{|l|l|l}4 & 4 & 4 \\ \hline & 0 & 0\end{array}\right): \quad 11,988,900$ paths $\quad \rightarrow$ OEIS: A306642, A000172

How many lattice paths from 0 to M ?

These are words of length $\rho(M)$ in $\left\{P_{i}\right\}$ that sum to M.

$$
2 \mathrm{~J}: \quad P_{1} P_{1} P_{2} P_{3} P_{2} P_{3}, \quad P_{3} P_{4} P_{1} P_{6} P_{2} P_{5}
$$

There are

$$
\binom{\rho(M)}{a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}}
$$

directed paths from $\hat{0}$ to $\mathbf{a}=\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}\right)$ in \mathbb{N}^{6}.
If $m_{0}=\min (M)$, then there are $m_{0}+1$ ways to represent M using the syzygy:

a_{1}	a_{2}	m_{0}				
a_{4}	a_{5}	0	$+t$	-1	-1	-1
:---:	:---:	:---:				
1	1	1				

if one of a_{1}, a_{2}, a_{3} equals m_{0} and one of a_{4}, a_{5}, a_{6} is zero.

Path Counting Formula

Theorem: (D.) Lattice path count from $\hat{0}$ to M

$$
v(M)=\sum_{t=0}^{m_{0}}\binom{\rho(M)}{a_{1}-t, a_{2}-t, a_{3}-t, a_{4}+t, a_{5}+t, a_{6}+t}
$$

$$
\begin{aligned}
v(J) & =\binom{3}{1,1,1,0,0,0}+\binom{3}{0,0,0,1,1,1}=6+6=12 \\
v(2 J) & =\binom{6}{2,2,2,0,0,0}+\binom{6}{1,1,1,1,1,1}+\binom{6}{0,0,0,2,2,2} \\
& =90+720+90=900 \\
v(3 J) & =1680+45360+45360+1680=94080
\end{aligned}
$$

$v(M)$ is evidently invariant under the action of G on | a_{1} | a_{2} | a_{3} |
| :--- | :--- | :--- |
| a_{4} | a_{5} | a_{6} |

Clebsch-Gordan Coefficients

$v(M)$ has a factor of hypergeometric type ${ }_{3} F_{2}$.
So do Clebsch-Gordan coefficients.

Definition

$$
F(\mathbf{a}, z)=\sum_{t=0}^{m_{0}}\binom{\rho(M)}{a_{1}-t, a_{2}-t, a_{3}-t, a_{4}+t, a_{5}+t, a_{6}+t} z^{t}
$$

where $m_{0}=\min \left(a_{1}, a_{2}, a_{3}\right)$ and at least one of a_{4}, a_{5}, a_{6} equals 0 .
Polynomial: insert z into definition of $v(M)$

Reciprocity?

Theorem ((D.) Reciprocity for Clebsch-Gordan coefficients)
Suppose a is the representative for M in $M(3)$ with at least one of a_{4}, a_{5}, a_{6} equal to 0 and $m_{0}=\min \left(a_{1}, a_{2}, a_{3}\right)$. Then

$$
F(\mathbf{a}, 1)=v(M)
$$

and

$$
F(\mathbf{a},-1)=(-1)^{a_{2}+m_{0}}\left(\begin{array}{c}
\rho(M) \\
a_{1}+a_{5}, \\
a_{2}+a_{6}, a_{3}+a_{4}
\end{array}\right) C(M) .
$$

$F(\mathbf{a}, 1)$: maximal chains/facets

Combinatorial Reciprocity: Binomial coefficients

$$
f(n)=\binom{n}{k}=\frac{n!}{k!(n-k)!}=\frac{n(n-1) \ldots(n-k+1)}{k!}
$$

Choose k objects from n.

$$
f(-n)=(-1)^{k}\binom{n+k-1}{k}=(-1)^{k} f(n+k-1)
$$

Put k balls in n boxes

Recommended for $M(3)$:
R. Stanley's slides from 2014 NYU talk

Magic Squares and Syzygies (durer.pdf)

Application: The 72 Regge Symmetries

Effect of $G=S_{3}$ Z $\mathbb{Z} / 2$ on $C(M)$:
Traditional: Regge (1958)
Wigner 3-j symbol (CG coefficient with extra normalizing factor) $\rightarrow G$ acts by sign changes based on parity
$C(M)$:
effect is complicated, but directly derived from theorem
Example: Consider switching columns 1 and 2 in

$$
M=\left[\begin{array}{lll}
a_{1}+a_{6} & a_{3}+a_{5} & a_{2}+a_{4} \\
a_{2}+a_{5} & a_{1}+a_{4} & a_{3}+a_{6} \\
a_{3}+a_{4} & a_{2}+a_{6} & a_{1}+a_{5}
\end{array}\right]
$$

The corresponding permutation is $(15)(24)(36) \quad$ (fixes column 3)

Regge Symmetry: Switch Columns 1 and 2

Permutation: $(15)(24)(36):$ Then

$$
\begin{aligned}
\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}\right) & \mapsto \mathbf{a}^{\prime}=\left(a_{5}, a_{4}, a_{6}, a_{2}, a_{1}, a_{3}\right) \\
& \mapsto \mathbf{a}^{\prime \prime}=\left(a_{5}, a_{4}, a_{6}, a_{2}, a_{1}, a_{3}\right)+m_{0}(1,1,1,-1,-1,-1)
\end{aligned}
$$

and

$$
F(\mathbf{a},-1)=(-1)^{m_{0}} F\left(\mathbf{a}^{\prime \prime},-1\right)
$$

or (multinomial terms cancel)

$$
(-1)^{a_{2}+m_{0}} C(M)=(-1)^{a_{4}+3 m_{0}} C\left(M^{\prime \prime}\right)
$$

or

$$
c_{m, n, k}(i, j)=(-1)^{k} c_{n, m, k}(j, i)
$$

That is,

$$
V(m) \otimes V(n) \rightarrow V(n) \otimes V(m)
$$

Thank you!

References

(1) P. MacMahon, Combinatory Analysis
(2) R. Stanley, Enumerative Combinatorics, Volume 1 (semi-magic squares, Ehrhart reciprocity)
(3) R. Stanley, Algebraic Combinatorics (Peck posets, wreath products)

