Counting Problems for Lattices

Robert W. Donley, Jr. (CUNY-QCC)

July 1, 2021

Table of Contents:

(1) Pascal's Triangle
(2) Partially Ordered Sets and Graded Posets
(3) Counting Lattice Paths and the Order-Raising Operator
(9) Example: Counting Paths in Young's Lattice
(3) Example: Counting Semi-Magic Squares of Size 3

Binomial Coefficients

Factorial:

$$
n!=n \cdot(n-1) \cdot(n-2) \ldots 3 \cdot 2 \cdot 1
$$

Binomial Coefficient: $0 \leqslant k \leqslant n$

$$
\binom{n}{k}=\frac{n!}{k!(n-k)!}=\frac{n \cdot(n-1) \ldots(n-k+1)}{k!}
$$

When $n<0$, we can use the second expression.
If $k<0$, binomial coefficients always equal zero.

Binomial Coefficient

Interpretation: " n choose k ":

The number of ways to choose k objects from a set of n objects
(1) There are n ! ways to order n objects (permutations), say,

$$
a_{1}, a_{2}, \ldots, a_{n} \rightarrow n \cdot(n-1) \ldots 1
$$

(2) A choice of k objects corresponds to placing a partition in the ordering

$$
a_{1}, \ldots, a_{k} \mid a_{k+1}, \ldots, a_{n}
$$

(3) To remove dependence on ordering, divide by k ! and $(n-k)$!
$\mid n$ - orderings $|=| k$ - choices $|\cdot| k$ - orderings $|\cdot|(n-k)-$ orderings \mid

Pascal's Triangle

Start at Row 0, then count up.
k-th entry in Row n is $\binom{n}{k} . \quad E x:\binom{4}{2}=\frac{4!}{2!2!}=6$

Pascal's Identity

Pascal's Identity

$$
\binom{n}{k}=\binom{n-1}{k}+\binom{n-1}{k-1}
$$

Point: To get an entry in the n-th row, add the two below.

Path Counting on an $m \times n$ grid

$(m, n)=($ base, height $)$

Record the number of directed paths from the origin (SW corner) to any vertex
with vertex numbers.
One obtains a fragment of Pascal's Triangle.

Path Counting on an $m \times n$ grid

RURRU

$$
\begin{array}{cccc}
1 & 3 & 6 & \begin{array}{|c}
10 \\
\uparrow \\
1
\end{array} \\
2 & 2 & 3 & 4 \\
1 & 1 & 1 & 1 \\
\mid \text { |Paths : } & S W \rightarrow N E \left\lvert\,=\binom{m+n}{m}\right.
\end{array}
$$

Paths correspond to words of length $m+n$ with $m R s$ and $n U s$:
Example: 3×2 grid above. Choose 3 positions from 5 for Rs.

$$
\binom{3+2}{3}=10
$$

Partially Ordered Sets

Definition:

A non-empty set P with binary relation \leqslant is called a partially ordered set (poset)
if, for all x, y, z in P, the binary relation \leqslant satisfies the following properties
(1) Reflexive: $\quad x \leqslant x$,
(2) Anti-symmetric: if $x \leqslant y$ and $y \leqslant x$, then $x=y$, and
(3) Transitive: if $x \leqslant y$ and $y \leqslant z$, then $x \leqslant z$.

Examples: Hasse Diagram of P

$$
a \leqslant b \leqslant c \leqslant d \leqslant e \leqslant f
$$

Point: We can recover \leqslant completely from links in diagram.

Finite Graded Posets

(P, \leqslant) finite poset with $\hat{0}$ and $\hat{1}$ (minimum and maximum)
P graded of rank n :
The length of every path from $\hat{0}$ to $\hat{1}$ equals the same n

Rank function $\rho: P \rightarrow\{0,1, \ldots, n\}$

$$
\rho(x)=\text { length of any path from } \hat{0} \text { to } x
$$

Rank numbers

$$
P_{k}=\{x \in P \mid \rho(x)=k\} \quad\left|P_{k}\right|=p_{k}
$$

Finite Graded Posets (Hasse Diagram of P)

$$
\hat{0}=a, \quad \rho(h)=3, \quad P_{3}=\{h, i, j\}, \quad p_{3}=3
$$

The Vector Space for a Finite Graded Poset with $\hat{0}$ and $\hat{1}$

Use elements of P as a basis (any order)

Definition: The vector space $\mathbb{R}[P]$
Let $\mathbb{R}[P]$ be the vector space over \mathbb{R} with formal basis P;
that is, elements of $\mathbb{R}[P]$ are linear combinations

$$
v=\sum_{x \in P} c_{x} x
$$

Definition: $\quad x \lessdot y$
 For x and y in P, we say y covers x if $x \leqslant y$ and no z satisfies $x<z<y$.

The Order-Raising Operator U

Definition: $\quad U: \mathbb{R}[P] \rightarrow \mathbb{R}[P]$

For x in P, linearly extend the map

$$
U x=\sum_{x<y} y
$$

Note that $U x$ is the formal sum of all elements of P directly "above" x. That is, $\left.U\right|_{P_{i}}: \mathbb{R}\left[P_{i}\right] \rightarrow \mathbb{R}\left[P_{i+1}\right]$.

Alternatively, if y is in P_{i+1}, then the coefficient of y in

$$
U\left(\sum_{x \in P} c_{x} x\right)
$$

is the sum of all values c_{x} just "below" y.

The Order-Raising Operator U

Fibonacci Numbers / Catalan Numbers

Example: Young Diagrams

Definition: The poset $L(r, s)$

$$
P=\left\{\mathbf{a}=\left(a_{1}, \ldots, a_{r}\right) \in \mathbb{N}^{r} \mid s \geqslant a_{r} \geqslant \cdots \geqslant a_{1} \geqslant 0\right\}
$$

Young diagram: stack r rows of a_{i} boxes, left justified.

Partial order on $P: \quad \mathbf{a} \leqslant \mathbf{b} \quad$ iff $\quad 0 \leqslant a_{i} \leqslant b_{i}$ for all i
$\mathbf{a} \leqslant \mathbf{b} \quad$ iff the diagram for \mathbf{a} fits inside the diagram for \mathbf{b}

Example: Young Diagrams

r restricts height, s restricts width

Rank function for $P: \quad \rho(\mathbf{a})=a_{1}+\cdots+a_{r}$

$$
P_{k}=\left\{\mathbf{a} \in P \mid a_{1}+\cdots+a_{r}=k\right\}
$$

The rank is just the number of boxes.

Example: $\rho(\mathbf{a})=4$ (Partitions of 4)

$$
4, \quad 3+1, \quad 2+2, \quad 2+1+1, \quad 1+1+1+1
$$

Example: Young Diagrams

Paths in P from $\hat{0}$ to a are given by standard tableaux.

Numbers strictly increase along rows and columns

$$
\hat{0} \rightarrow \begin{array}{|l|l|}
\hline 1
\end{array} \rightarrow \begin{array}{|l|l|}
\hline 1 & 2 \\
\hline 3 &
\end{array} \rightarrow \begin{array}{|l|l|l|}
\hline 1 & 2 & 4 \\
\hline 3 & &
\end{array} \rightarrow \begin{array}{|l|l|l|}
\hline 1 & 2 & 4 \\
\hline 3 & 5 & \\
\hline
\end{array}
$$

Let $f^{\mathbf{a}}$ be the number of standard tableaux of shape \mathbf{a}.
$f^{\mathbf{a}}$ is determined using the hook length formula:

$$
\begin{array}{|l|l|l|}
\hline 4 & 3 & 1 \\
\hline 2 & 1 &
\end{array} \quad \rightarrow \quad f^{(3,2)}=\frac{5!}{4 \cdot 3 \cdot 1 \cdot 2 \cdot 1}=5
$$

$$
L(3,4)
$$

Example: Semi-Magic Squares of Size 3

A square matrix is called a semi-magic square if
(1) entries are integers $\geqslant 0$, and
(2) the sum along any row or column is equal to the same number L.
L is called the line sum of M.

Example: We consider only the 3×3 case for this talk.

$$
M=\left(\begin{array}{lll}
3 & 2 & 0 \\
2 & 1 & 2 \\
0 & 2 & 3
\end{array}\right), \quad L=5
$$

Examples: $L=1$

A permutation matrix is a square matrix such that there is exactly one 1 in each row and column.

$$
\begin{array}{lll}
P_{1}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right), & P_{2}=\left(\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right), & P_{3}=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right), \\
P_{4}=\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right), & P_{5}=\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right), & P_{6}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right) .
\end{array}
$$

Algebra for Semi-Magic Squares

1) If $k \geqslant 0$ and M, N are semi-magic squares, so are

$$
k M, \quad M+N
$$

with line sums $k L_{M}$ and $L_{M}+L_{N}$, respectively.
2) Any linear combination with $a_{i} \geqslant 0$ integers

$$
a_{1} P_{1}+\ldots a_{6} P_{6}
$$

is a semi-magic square with line sum $a_{1}+\cdots+a_{6}$.
3) In fact, any semi-magic square of size three is of the form in (2). (Induction on L.)

Is $\left\{P_{i}\right\}$ a basis? No.

Solve:

$$
\sum a_{i} P_{i}=\left(\begin{array}{lll}
a_{1}+a_{6} & a_{3}+a_{5} & a_{2}+a_{4} \\
a_{2}+a_{5} & a_{1}+a_{4} & a_{3}+a_{6} \\
a_{3}+a_{4} & a_{2}+a_{6} & a_{1}+a_{5}
\end{array}\right)=0
$$

Solution:

$$
a_{1}=a_{2}=a_{3}=1, \quad a_{4}=a_{5}=a_{6}=-1
$$

or

$$
\begin{aligned}
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)+\left(\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)+\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right) & =\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right)+\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)+\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right) \\
& =\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right)
\end{aligned}
$$

Rectangles

Every semi-magic square M can be represented by a rectangle:

$$
M \quad \leftrightarrow \quad \mathbf{a}=\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}\right) \leftrightarrow \leftrightarrow \quad \begin{array}{|l|l|l|}
\hline a_{1} & a_{2} & a_{3} \\
\hline a_{4} & a_{5} & a_{6} \\
\hline
\end{array}
$$

Here the single relation takes the form

1	1	1				
0	0	0	$=$	0	0	0
:---	:---	:---				
1	1	1	.			

By repeatedly shifting up, uniquely represented if one of a_{4}, a_{5}, a_{6} is zero.
Note: line sum $L=a_{1}+\cdots+a_{6}$ is unchanged by shifting 1 s

Counting by Line Sum

Question: How many semi-magic squares are there with fixed line sum L ? (MacMahon 1916)

$$
H_{3}(L)=\binom{L+5}{5}-\binom{L+2}{5}
$$

First term: put L balls in 6 boxes.
Second term: put $L-3$ balls in 6 boxes
Throw away rectangles of the form: $\quad(L-3)+3=L$

a_{1}	a_{2}	a_{3}				
a_{4}	a_{5}	a_{6}	$+$	0	0	0
:---	:---	:---				
1	1	1				

Put L balls in k boxes? $L+(k-1)$ choose $k-1$ (assume 1s at ends) $L=5, k=4: \quad \rightarrow \quad 1: 01000101: 1$

Counting by Orbits

Calculate:

$$
H_{3}(0)=1, \quad H_{3}(1)=6, \quad H_{3}(2)=21, \quad H_{3}(3)=55, \ldots
$$

$\mathbf{H}_{3}(\mathbf{1})=6$: \quad Permutation matrices
Start with identity matrix. Apply 6 row permutations.
$\mathbf{H}_{\mathbf{3}}(\mathbf{2})=\mathbf{2 1}: \quad$ either $2+0+0$ or $1+1+0$ to get $L=2$.

$$
\begin{gathered}
\begin{array}{|l|l|l|}
\hline 1 & 1 & 0 \\
\hline 0 & 0 & 0 \\
\hline
\end{array} \rightarrow\left(\begin{array}{lll}
1 & 0 & 1 \\
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right), \begin{array}{|l|l|l|}
\hline 1 & 0 & 0 \\
\hline 1 & 0 & 0 \\
\hline
\end{array} \rightarrow\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 2 & 0 \\
1 & 0 & 1
\end{array}\right) \\
\begin{array}{|l|l|l|}
\hline 2 & 0 & 0 \\
0 & 0 & 0
\end{array} \rightarrow\left(\begin{array}{lll}
2 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right) \\
6+9+6=21
\end{gathered}
$$

Symmetries: Wreath Product

At matrix level, the magic square property and line sum are preserved by
(1) row permutations,
(2) column permutations, and
(3) transpose.

At rectangle level, the effect is to
(1) switch rows
(2) allow permutations in row entries.

1	1	0
0	0	0

1	0	1
0	0	0

0	1	1
0	0	0

0	0	0
1	1	0

0	0	0
0	1	1

0	0	0
1	0	1

Research:

M(3) forms a graded poset:
Partial ordering (entry-wise for all entries):

$$
\begin{gathered}
M \leqslant N \quad \text { if } \quad m_{i j} \leqslant n_{i j} \\
\left(\begin{array}{lll}
2 & 1 & 0 \\
1 & 2 & 0 \\
0 & 0 & 3
\end{array}\right) \leqslant\left(\begin{array}{lll}
2 & 4 & 0 \\
1 & 2 & 3 \\
3 & 0 & 3
\end{array}\right)
\end{gathered}
$$

Rank function $\rho(M)=L$

$M(3,2)$ as rectangles: max entry in matrix is 2 or less

To get to	3	3	3
0	0	0	
0	04,080		\quad paths

To get to | 4 | 4 | 4 |
| :--- | :--- | :--- |
| | 0 | 0 |
| 0 | 0 | 0 |$: \quad 11,988,900$ paths

$M(3,2)$ as semi-magic squares:

$$
\left.\left.\begin{array}{rl}
{\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{lll}
2 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right]}
\end{array} \begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \begin{array}{lll}
2 & 0 & 1 \\
1 & 2 & 0 \\
0 & 1 & 2
\end{array}\right] \quad\left[\begin{array}{lll}
2 & 0 & 2 \\
2 & 2 & 0 \\
0 & 2 & 2
\end{array}\right] \quad\left[\begin{array}{lll}
1 & 0 & 1 \\
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right] \quad\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right] \quad\left[\begin{array}{lll}
2 & 1 & 1 \\
1 & 2 & 1 \\
1 & 1 & 2
\end{array}\right]\left[\begin{array}{lll}
2 & 1 & 2 \\
2 & 2 & 1 \\
1 & 2 & 2
\end{array}\right]\left[\begin{array}{ll}
2 & 2 \\
2 & 2 \\
2 & 2 \\
2 & 2
\end{array}\right],\left[\begin{array}{lll}
1 & 0 & 2 \\
1 & 2 & 0 \\
1 & 1 & 1
\end{array}\right] \quad\left[\begin{array}{lll}
1 & 2 & 1 \\
1 & 2 & 1 \\
2 & 0 & 2
\end{array}\right] .\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 2 & 0 \\
1 & 0 & 1
\end{array}\right] \quad\left[\begin{array}{ll}
\end{array}\right.
$$

Thank you!

For slides, email at rdonley@qcc.cuny.edu

