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Binomial Coe�cients

Factorial:

n! “ n ¨ pn ´ 1q ¨ pn ´ 2q . . . 3 ¨ 2 ¨ 1

Binomial Coe�cient: 0 § k § n
ˆ
n

k

˙
“ n!

k!pn ´ kq! “ n ¨ pn ´ 1q . . . pn ´ k ` 1q
k!

When n † 0, we can use the second expression.

If k † 0, binomial coe�cients always equal zero.
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Binomial Coe�cient

Interpretation: “n choose k”:

The number of ways to choose k objects from a set of n objects

1 There are n! ways to order n objects (permutations),
say,

a1, a2, . . . , an Ñ n ¨ pn ´ 1q . . . 1
2 A choice of k objects corresponds to placing a partition in the ordering

a1, . . . , ak | ak`1, . . . , an.

3 To remove dependence on ordering, divide by k! and pn ´ kq!

|n ´ orderings| “ |k ´ choices| ¨ |k ´ orderings| ¨ |pn ´ kq ´ orderings|
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Pascal’s Triangle

1 5 10 1510

14641

1331

121

11

1

Start at Row 0, then count up.

k-th entry in Row n is

ˆ
n

k

˙
. Ex:

ˆ
4
2

˙
“ 4!

2! 2! “ 6
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Pascal’s Identity

1 5 10 1510

14641

1331

Pascal’s Identity
ˆ
n

k

˙
“

ˆ
n ´ 1
k

˙
`

ˆ
n ´ 1
k ´ 1

˙

Point: To get an entry in the n-th row, add the two below.
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Path Counting on an m ˆ n grid

pm, nq “ (base, height)
10

4

6

1

3

3

1

2

1

1

1

1

Record the number of directed paths from the origin (SW corner) to any
vertex
with vertex numbers.

One obtains a fragment of Pascal’s Triangle.
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Path Counting on an m ˆ n grid

RURRU

10

4

6

1

3

3

1

2

1

1

1

1

|Paths : SW Ñ NE | “
ˆ
m ` n

m

˙

Paths correspond to words of length m ` n with m Rs and n Us:

Example: 3 ˆ 2 grid above. Choose 3 positions from 5 for Rs.
ˆ
3 ` 2
3

˙
“ 10
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Partially Ordered Sets

Definition:

A non-empty set P with binary relation § is called a

partially ordered set (poset)

if, for all x , y , z in P , the binary relation § satisfies the following
properties

1 Reflexive: x § x ,

2 Anti-symmetric: if x § y and y § x , then x “ y , and

3 Transitive: if x § y and y § z , then x § z .
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Examples: Hasse Diagram of P

f

e

d

c

b

a

m

lk

jih

fed

cb

a

a § b § c § d § e § f

Point: We can recover § completely from links in diagram.
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Finite Graded Posets

pP ,§q finite poset with 0̂ and 1̂ (minimum and maximum)

P graded of rank n:

The length of every path from 0̂ to 1̂ equals the same n

Rank function ⇢ : P Ñ t0, 1, . . . , nu
⇢pxq “ length of any path from 0̂ to x

Rank numbers

Pk “ tx P P | ⇢pxq “ ku |Pk | “ pk
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Finite Graded Posets (Hasse Diagram of P)

m

lk

jih

fed

cb

a

0̂ “ a, ⇢phq “ 3, P3 “ th, i , ju, p3 “ 3
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The Vector Space for a Finite Graded Poset with 0̂ and 1̂

Use elements of P as a basis (any order)

Definition: The vector space RrPs
Let RrPs be the vector space over R with formal basis P ;

that is, elements of RrPs are linear combinations

v “
ÿ

xPP
cx x

Definition: x Ì y

For x and y in P , we say y covers x if x § y and no z satisfies x † z † y .
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The Order-Raising Operator U

Definition: U : RrPs Ñ RrPs
For x in P , linearly extend the map

Ux “
ÿ

xÌy

y

Note that Ux is the formal sum of all elements of P directly “above” x .

That is, U|Pi : RrPi s Ñ RrPi`1s.

Alternatively, if y is in Pi`1, then the coe�cient of y in

Up
ÿ

xPP
cx xq

is the sum of all values cx just “below” y .
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The Order-Raising Operator U

133

121

U : RrP2s Ñ RrP3s

Upx1 ` 2x2 ` x3q “ 1px4q ` 2px4 ` x5q ` 1px5 ` x6q
“ 3x4 ` 3x5 ` x6
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Fibonacci Numbers / Catalan Numbers
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Example: Young Diagrams

Definition: The poset Lpr , sq
P “ ta “ pa1, . . . , ar q P Nr | s • ar • ¨ ¨ ¨ • a1 • 0u

Young diagram: stack r rows of ai boxes, left justified.

p4, 3, 1q “ § “ p4, 4, 4q “ 1̂

Partial order on P : a § b i↵ 0 § ai § bi for all i

a § b i↵ the diagram for a fits inside the diagram for b
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Example: Young Diagrams

r restricts height, s restricts width

Rank function for P : ⇢paq “ a1 ` ¨ ¨ ¨ ` ar

Pk “ ta P P | a1 ` ¨ ¨ ¨ ` ar “ ku

The rank is just the number of boxes.

Example: ⇢paq “ 4 (Partitions of 4)

4, 3 ` 1, 2 ` 2, 2 ` 1 ` 1, 1 ` 1 ` 1 ` 1
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Example: Young Diagrams

Paths in P from 0̂ to a are given by standard tableaux.

Numbers strictly increase along rows and columns

0̂ Ñ 1 Ñ 1 2 Ñ 1 2

3
Ñ 1 2 4

3
Ñ 1 2 4

3 5

Let f a be the number of standard tableaux of shape a.

f
a is determined using the hook length formula:

4 3 1

2 1
Ñ f

p3,2q “ 5!

4 ¨ 3 ¨ 1 ¨ 2 ¨ 1 “ 5
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Example: Semi-Magic Squares of Size 3

A square matrix is called a semi-magic square if

1 entries are integers • 0, and

2 the sum along any row or column is equal to the same number L.

L is called the line sum of M.

Example: We consider only the 3 ˆ 3 case for this talk.

M “
¨

˝
3 2 0
2 1 2
0 2 3

˛

‚, L “ 5.

Robert W. Donley, Jr. (CUNY-QCC) Counting Problems for Lattices July 1, 2021 20 / 31



Examples: L “ 1

A permutation matrix is a square matrix such that there is exactly one 1
in each row and column.

P1 “
¨

˝
1 0 0
0 1 0
0 0 1

˛

‚, P2 “
¨

˝
0 0 1
1 0 0
0 1 0

˛

‚, P3 “
¨

˝
0 1 0
0 0 1
1 0 0

˛

‚,

P4 “
¨

˝
0 0 1
0 1 0
1 0 0

˛

‚, P5 “
¨

˝
0 1 0
1 0 0
0 0 1

˛

‚, P6 “
¨

˝
1 0 0
0 0 1
0 1 0

˛

‚.
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Algebra for Semi-Magic Squares

1) If k • 0 and M,N are semi-magic squares, so are

kM, M ` N

with line sums kLM and LM ` LN , respectively.

2) Any linear combination with ai • 0 integers

a1P1 ` . . . a6P6

is a semi-magic square with line sum a1 ` ¨ ¨ ¨ ` a6.

3) In fact, any semi-magic square of size three is of the form in (2).
(Induction on L.)
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Is tPiu a basis? No.

Solve:
ÿ

aiPi “
¨

˝
a1 ` a6 a3 ` a5 a2 ` a4

a2 ` a5 a1 ` a4 a3 ` a6

a3 ` a4 a2 ` a6 a1 ` a5

˛

‚ “ 0.

Solution:

a1 “ a2 “ a3 “ 1, a4 “ a5 “ a6 “ ´1,

or ¨

˝
1 0 0
0 1 0
0 0 1

˛

‚ `
¨

˝
0 0 1
1 0 0
0 1 0

˛

‚ `
¨

˝
0 1 0
0 0 1
1 0 0

˛

‚ “
¨

˝
0 0 1
0 1 0
1 0 0

˛

‚ `
¨

˝
0 1 0
1 0 0
0 0 1

˛

‚ `
¨

˝
1 0 0
0 0 1
0 1 0

˛

‚

“
¨

˝
1 1 1
1 1 1
1 1 1

˛

‚
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Rectangles

Every semi-magic square M can be represented by a rectangle:

M Ø a “ pa1, a2, a3, a4, a5, a6q Ø a1 a2 a3

a4 a5 a6
.

Here the single relation takes the form

1 1 1

0 0 0
“ 0 0 0

1 1 1
.

By repeatedly shifting up, uniquely represented if one of a4, a5, a6 is zero.

Note: line sum L “ a1 ` ¨ ¨ ¨ ` a6 is unchanged by shifting 1s
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Counting by Line Sum
Question: How many semi-magic squares are there with fixed line sum L?
(MacMahon 1916)

H3pLq “
ˆ
L ` 5
5

˙
´

ˆ
L ` 2
5

˙

First term: put L balls in 6 boxes.

Second term: put L ´ 3 balls in 6 boxes

Throw away rectangles of the form: pL ´ 3q ` 3 “ L

a1 a2 a3

a4 a5 a6
` 0 0 0

1 1 1
.

Put L balls in k boxes? L ` pk ´ 1q choose k ´ 1
(assume 1s at ends) L “ 5, k “ 4 : Ñ 1 : 01000101 : 1
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Counting by Orbits
Calculate:

H3p0q “ 1, H3p1q “ 6, H3p2q “ 21, H3p3q “ 55, . . .

H3p1q “ 6: Permutation matrices
Start with identity matrix. Apply 6 row permutations.

H3p2q “ 21: either 2+0+0 or 1+1+0 to get L “ 2.

1 1 0

0 0 0
Ñ

¨

˝
1 0 1
1 1 0
0 1 1

˛

‚,
1 0 0

1 0 0
Ñ

¨

˝
1 0 1
0 2 0
1 0 1

˛

‚

2 0 0

0 0 0
Ñ

¨

˝
2 0 0
0 2 0
0 0 2

˛

‚

6 ` 9 ` 6 “ 21
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Symmetries: Wreath Product

At matrix level, the magic square property and line sum are preserved by

1 row permutations,

2 column permutations, and

3 transpose.

At rectangle level, the e↵ect is to

1 switch rows

2 allow permutations in row entries.

1 1 0

0 0 0
,

1 0 1

0 0 0
,

0 1 1

0 0 0
,

0 0 0

1 1 0
,

0 0 0

0 1 1
,

0 0 0

1 0 1
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Research:

Mp3q forms a graded poset:
Partial ordering (entry-wise for all entries):

M § N if mij § nij

¨

˝
2 1 0
1 2 0
0 0 3

˛

‚ §
¨

˝
2 4 0
1 2 3
3 0 3

˛

‚

Rank function ⇢pMq “ L
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Mp3, 2q as rectangles: max entry in matrix is 2 or less

0 0 0

0 0 0
1,1

1 0 0

0 0 0
6,1

1 1 0

0 0 0
6,2

2 0 0

0 0 0
6,1

1 0 0

1 0 0
9,2

1 1 1

0 0 0
1,12

2 1 0

0 0 0
12,3

1 1 0

1 0 0
18,6

2 1 1

0 0 0
6,36

2 2 0

0 0 0
6,6

1 1 0

1 1 0
9,24

2 2 1

0 0 0
6,150

2 2 2

0 0 0
1,900

To get to 3 3 3

0 0 0
: 94,080 paths

To get to 4 4 4

0 0 0
: 11,988,900 paths
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Mp3, 2q as semi-magic squares:

»

–
0 0 0
0 0 0
0 0 0

fi

fl

»

–
1 0 0
0 1 0
0 0 1

fi

fl

»

–
1 0 1
1 1 0
0 1 1

fi

fl

»

–
2 0 0
0 2 0
0 0 2

fi

fl

»

–
1 0 1
0 2 0
1 0 1

fi

fl

»

–
1 1 1
1 1 1
1 1 1

fi

fl

»

–
2 0 1
1 2 0
0 1 2

fi

fl

»

–
1 0 2
1 2 0
1 1 1

fi

fl

»

–
2 1 1
1 2 1
1 1 2

fi

fl

»

–
2 0 2
2 2 0
0 2 2

fi

fl

»

–
1 2 1
1 2 1
2 0 2

fi

fl

»

–
2 1 2
2 2 1
1 2 2

fi

fl

»

–
2 2 2
2 2 2
2 2 2

fi

fl
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Thank you!

For slides, email at rdonley@qcc.cuny.edu

Robert W. Donley, Jr. (CUNY-QCC) Counting Problems for Lattices July 1, 2021 31 / 31


	Section no.0
	Section no.0
	Section no.0
	Section no.0
	Section no.0
	Section no.0
	Section no.0
	Section no.0
	Section no.0
	Section no.0
	Section no.0
	Section no.0
	Section no.0
	Section no.0
	Section no.0
	Section no.0
	Section no.0
	Section no.0
	Section no.0
	Section no.0
	Section no.0
	Section no.0
	Section no.0
	Section no.0
	Section no.0
	Section no.0
	Section no.0
	Section no.0
	Section no.0
	Section no.0

