Vandermonde convolution for ranked posets

Robert W. Donley, Jr.
(CUNY-QCC)

May 25, 2021

Table of Contents:

Goal: 5 interpretations of Chu-Vandermonde convolution (joining of complementary parts)
(1) Chu-Vandermonde Convolution
(2) Graded Posets and Path Counting
(3) Example: Weak Compositions
(9) Example: Young Diagrams
(5) The Vector Space $\mathbb{C} P$ and the Order-Raising Operator U
(c) Invariant Forms

Doppelgänger (twin stranger):
What happens when a poset meets its dual?
Star Trek Mirror Universe (1967), Harlan Ellison's Shatterday (1980),
Timecop (1994), Twin Peaks: The Return (2017)

Chu-Vandermonde Convolution

Chu-Vandermonde Convolution

Fix $m, n \geqslant 0$. Then, for all $0 \leqslant k \leqslant \min (m, n)$,

$$
\sum_{i=0}^{k}\binom{m}{i}\binom{n}{k-i}=\binom{m+n}{k} .
$$

Interpretation \#1:

Suppose

$$
X=A \cup B(\text { disjoint union }), \quad|A|=m \quad \text { and } \quad|B|=n
$$

The convolution counts all subsets of X with k elements, partitioned using i choices from $A, k-i$ choices from B (independent).

Chu-Vandermonde Convolution

Chu-Vandermonde Convolution

Fix $m, n \geqslant 0$. Then, for all $0 \leqslant k \leqslant \min (m, n)$,

$$
\sum_{i=0}^{k}\binom{m}{i}\binom{n}{k-i}=\binom{m+n}{k}
$$

Interpretation \#2:

Extract the coefficient of x^{k} from each side of

$$
\begin{gathered}
(x+1)^{m}(x+1)^{n}=(x+1)^{m+n} \\
\left(\sum_{i}\binom{m}{i} x^{i}\right) \quad\left(\sum_{j}\binom{n}{j} x^{j}\right)=\sum_{t}\binom{m+n}{t} x^{t}
\end{gathered}
$$

Chu-Vandermonde Convolution: $m \times n$ grid

$(m, n)=($ base, height $)$

Interpretation \#3:
Record the number of paths from the origin (SW corner) to any vertex with vertex numbers.

Chu-Vandermonde Convolution: $m \times n$ grid

RURRU

$$
\mid \text { Paths : } S W \rightarrow N E \left\lvert\,=\binom{m+n}{m}\right.
$$

Paths correspond to words of length $m+n$ with $m R s$ and $n U s$:
Example: 3×2 grid above

$$
\binom{3+2}{3}=10
$$

Chu-Vandermonde Convolution: $m \times n$ grid

Interpretation \#3:

$$
\begin{aligned}
|S W \rightarrow N E| & =\sum_{\boxed{x}}|S W \rightarrow x| \cdot|x \rightarrow N E| \\
& =\sum_{\boxed{x}}|S W \rightarrow x| \cdot|N E \rightarrow x| \\
& 3+6+1=10
\end{aligned}
$$

Finite Graded Posets

(P, \leqslant) finite poset with $\hat{0}$ and $\hat{1}$
P graded of rank n :
The length of every path from $\hat{0}$ to $\hat{1}$ equals the same n

Rank function $\rho: P \rightarrow\{0,1, \ldots, n\}$

$$
\rho(x)=\text { length of any path from } \hat{0} \text { to } x
$$

Rank numbers

$$
P_{k}=\{x \in P \mid \rho(x)=k\} \quad\left|P_{k}\right|=p_{k}
$$

Finite Graded Posets

(P, \leqslant) finite graded poset (with $\hat{0}$ and $\hat{1}$)

Dual poset $\left(P^{*}, \leqslant_{*}\right)$:

$$
x \rightarrow x^{*}, \quad x \leqslant y \Longleftrightarrow y^{*} \leqslant * x^{*}
$$

Rank function and numbers

$$
\rho_{*}(x)=n-\rho(x), \quad\left(P^{*}\right)_{k}=\left(P_{n-k}\right)^{*}, \quad p_{k}^{*}=p_{n-k}
$$

Extreme elements in P^{*}
Minimum: $\hat{1}^{*}, \quad$ Maximum: $\hat{0}^{*}$
Net effect: turn P upside down

Finite Graded Posets (Hasse Diagrams of P and P^{*})

Finite Graded Posets (P and $\left.P^{*}\right)$

Finite Graded Posets $\quad\left(P\right.$ and $\left.P^{*}\right)$

Example: Weak compositions. Fix s in \mathbb{N}.

Definition: Weak Compositions with maximum s

$$
P=\left\{\mathbf{a}=\left(a_{1}, \ldots, a_{r}\right) \in \mathbb{N}^{r} \mid 0 \leqslant a_{i} \leqslant s \text { for all } 1 \leqslant i \leqslant r\right\}
$$

Each a determines a rectangular box based at the origin inside the r-cube with side length s.

$$
\text { Partial order on } P: \quad \mathbf{a} \leqslant \mathbf{b} \quad \text { iff } \quad 0 \leqslant a_{i} \leqslant b_{i} \quad \text { for all } i
$$

The box for \mathbf{a} is contained in the box for \mathbf{b}.

Example: Weak compositions.

Rank function for $P: \quad \rho(\mathbf{a})=a_{1}+\cdots+a_{r}$

$$
P_{k}=\left\{\mathbf{a} \in P \mid a_{1}+\cdots+a_{r}=k\right\}
$$

All rectangular boxes with corner on fixed hyperplane.

$$
\hat{0}=(0, \ldots, 0), \quad \hat{1}=(s, \ldots, s), \quad \rho(\hat{1})=r s
$$

Involution on $P: \quad\left(a_{1}, \ldots, a_{r}\right)^{*}=\left(s-a_{1}, \ldots, s-a_{r}\right)$

$$
\left(P_{k}\right)^{*}=P_{r s-k}
$$

$$
C(3,1)
$$

$$
1.6=6
$$

$$
1 \cdot 2+1.2+1 \cdot 2=6
$$

Example: Multinomial Convolution

Path counting in a r-cube with side length s :
Theorem (MacMahon?)
Fix $r, s \geqslant 0$. Then, for all $0 \leqslant k \leqslant r s$,

$$
\sum_{\substack{\sum a_{i}=k, 0 \leqslant a_{i} \leqslant s}}\binom{k}{a_{1}, \ldots, a_{r}}\binom{r s-k}{s-a_{1}, \ldots s-a_{r}}=\binom{r s}{s, \ldots, s} .
$$

Interpretation \#2: Extract coefficients of $x_{1}^{s} \ldots x_{r}^{s}$ in

$$
\left(x_{1}+\cdots+x_{r}\right)^{k}\left(x_{1}+\cdots+x_{r}\right)^{r s-k}=\left(x_{1}+\cdots+x_{r}\right)^{r s}
$$

Example: Multinomial Convolution

Generalize: replace $\hat{1}=(s, \ldots, s)$ with $\left(s_{1}, . ., s_{r}\right)$.
Interpret: Counting lattice paths in a rectangular r-box.

Corollary

Fix $r, s_{1}, \ldots, s_{r} \geqslant 0$. Then, for all $0 \leqslant k \leqslant r s$,

$$
\sum_{\sum_{\substack{a_{i}=k, 0 \leqslant a_{i} \leqslant s_{i}}}\binom{s_{1}}{a_{1}} \ldots\binom{s_{r}}{a_{r}}=\binom{s_{1}+\cdots+s_{r}}{k}}
$$

This is just Interpretation \#1:
Partition X into S_{1}, \ldots, S_{r}, and choose k elements of X.

Example: Young Diagrams

Definition: The poset $L(r, s)$

$$
P=\left\{\mathbf{a}=\left(a_{1}, \ldots, a_{r}\right) \in \mathbb{N}^{r} \mid s \geqslant a_{r} \geqslant \cdots \geqslant a_{1} \geqslant 0\right\}
$$

Young diagram: stack r rows of a_{i} boxes, left justified.

Partial order on $P: \quad \mathbf{a} \leqslant \mathbf{b} \quad$ iff $\quad 0 \leqslant a_{i} \leqslant b_{i}$ for all i
$\mathbf{a} \leqslant \mathbf{b} \quad$ iff the diagram for \mathbf{a} fits inside the diagram for \mathbf{b}

Example: Young Diagrams

Rank function for P :

$$
\rho(\mathbf{a})=a_{1}+\cdots+a_{r}
$$

$$
P_{k}=\left\{\mathbf{a} \in P \mid a_{1}+\cdots+a_{r}=k\right\}
$$

Involution on $P: \quad\left(a_{1}, \ldots, a_{r}\right)^{*}=\left(s-a_{r}, \ldots, s-a_{1}\right)$

$$
\left(P_{k}\right)^{*}=P_{r s-k}
$$

Remove boxes for λ from $\hat{1}=(s, \ldots, s)$ and rotate.

$(4,3,1) \rightarrow$| $*$ | $*$ | $*$ | $*$ |
| :---: | :---: | :---: | :---: |
| $*$ | $*$ | $*$ | |
| $*$ | | | |\rightarrow| | | |
| :--- | :--- | :--- |
| | | |$\rightarrow(3,1,0)$

Example: Young Diagrams

Paths in P from $\hat{0}$ to λ are given by standard tableaux.

Numbers strictly increase along rows and columns

Let f^{λ} be the number of standard tableaux of shape λ.
f^{λ} is determined using the hook length formula:

$$
\begin{array}{|l|l|l|}
\hline 4 & 3 & 1 \\
\hline 2 & 1 &
\end{array} \quad \rightarrow \quad f^{(3,2)}=\frac{5!}{4 \cdot 3 \cdot 1 \cdot 2 \cdot 1}=5
$$

$L(3,4)$

6	5	4	3
5	4	3	2
4	3	2	1

$$
f^{(4,4,4)}=\frac{12!2}{6!5!4!}=462
$$

Example: Young Diagrams

Theorem (Cauchy Identity for Schur Functions - Variant)

Fix $r, s \geqslant 0$. Then, for all $0 \leqslant k \leqslant r s$,

$$
\sum_{\substack{\lambda \vdash k \\ \lambda \leqslant(s, \ldots, s)}} f^{\lambda} f^{\lambda^{*}}=f^{(s, \ldots, s)}=C_{r}(s)
$$

where

$$
C_{r}(s)=\frac{(r s)!}{\Pi}
$$

and Π is the product of hook lengths in an $r \times s$ rectangle.
$C_{r}(s)$ are the r-dimensional Catalan numbers. $r=2$: Catalan numbers

5	4	3	2
4	3	2	1

$$
k=0: \quad C_{2}(s)=\frac{(2 s)!}{(s+1)!s!}
$$

$$
k=s: \quad C_{2}(s) \text { expressed as a sum of }\left\lfloor\frac{s}{2}\right\rfloor+1 \text { squares. }\left(\lambda=\lambda^{*}\right)
$$

The Vector Space for a Finite Graded Poset with $\hat{0}$ and $\hat{1}$

Fix any ordering of elements of P with non-decreasing rank:
$B=\{\hat{0}, \ldots, x, \ldots, \hat{1}\}$

Definition: The vector space $\mathbb{Q}[P]$
Let $\mathbb{Q}[P]$ be the vector space over \mathbb{Q} with formal basis B;
that is, elements of $\mathbb{Q}[P]$ are linear combinations

$$
v=\sum_{x \in B} c_{x} x
$$

Definition: $\quad x \lessdot y$

For x and y in P, we say y covers x if $x \leqslant y$ and no z satisfies $x<z<y$.

The Order-Raising Operator U

Definition: $\quad U: \mathbb{Q}[P] \rightarrow \mathbb{Q}[P]$

For x in B, linearly extend the map

$$
U x=\sum_{x<y} y
$$

Note that $U x$ is the formal sum of all elements of P directly "above" x. That is, $\left.U\right|_{P_{i}}: \mathbb{Q}\left[P_{i}\right] \rightarrow \mathbb{Q}\left[P_{i+1}\right]$.

Alternatively, if y is in P_{i+1}, then the coefficient of y in

$$
U\left(\sum_{x \in B} c_{x} x\right)
$$

is the sum of all values c_{X} just "below" y.

The Order-Raising Operator U

$$
U: \mathbb{Q}\left[P_{2}\right] \rightarrow \mathbb{Q}\left[P_{3}\right]
$$

$$
U\left(x_{1}+2 x_{2}+x_{3}\right)=1\left(x_{4}\right)+2\left(x_{4}+x_{5}\right)+1\left(x_{5}+x_{6}\right)
$$

$$
=3 x_{4}+3 x_{5}+x_{6}
$$

The Order-Raising Operator U

Question: Iterating U on 0 counts paths from 0 .
What about the rest of $\mathbb{Q}[P]$? No time (JCF), but...

Consider U as a matrix in the basis B. Then
(1) U is the (directed) adjacency matrix for the Hasse diagram of P,
(2) $u_{i j}=1$ if $x_{j} \lessdot x_{i}$, else 0 ,
(3) U is lower-triangular nilpotent,
(9) in fact, $U^{n} \hat{0}=c \hat{1}$,
(5) the non-zero element c of U^{n} (lower left-hand corner) is the number of paths from $\hat{0}$ to $\hat{1}$.

Interpretation \#4:

Vandermonde convolution for a finite graded poset with $\hat{0}$ and $\hat{1}$:

$$
U^{k} \cdot U^{n-k}=U^{n}
$$

Invariant Bilinear Forms (no complex conjugation)

Define a bilinear form on $\mathbb{Q}[P] \times \mathbb{Q}\left[P^{*}\right]$ by extending

$$
\left\langle x, y^{*}\right\rangle=\delta_{x, y}
$$

If U^{*} is the order operator for $\mathbb{Q}\left[P^{*}\right]$, then

$$
\left\langle U x, y^{*}\right\rangle=\left\langle x, U^{*} y^{*}\right\rangle .
$$

This gives
Interpretation \#5: Convolution as an invariance property.

$$
\left\langle U^{k} \hat{0},\left(U^{*}\right)^{n-k} \hat{1}^{*}\right\rangle=\left\langle U^{n} \hat{0}, \hat{1}^{*}\right\rangle
$$

Extend to Lie algebra $s /(2, \mathbb{Q})=\operatorname{Span}\{U, D, H\}$?
Peck posets: G.W. PECK, Stanley, Proctor, Robert G. Donnelly (Graham, West, Purdy, Erdős, Chung, Kleitman)

Thank you!

References

(1) W. Fulton, Young Tableaux
(3) P. MacMahon, Combinatory Analysis

- R. Stanley, Enumerative Combinatorics, Volume 1
- R. Stanley, Algebraic Combinatorics

Honorable mention:
S. Ault and C. Kicey, Counting Lattice Paths Using Fourier Methods (2019)

