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Motivation

V (m) irreducible SU(2)-module over C

Clebsch-Gordan Decomposition (Vector Space Level)

V (m)⊗ V (n) ∼= V (|m − n|)⊕ · · · ⊕ V (m + n − 2)⊕ V (m + n)

Choosing a basis without normalizing (no radicals):

Clebsch-Gordan Coefficients (Vector Level)

cm,n,k(i , j) =
k∑

s=0

(−1)s
(
i + j − k
i − s

)(
m − s
k − s

)(
n − k + s

s

)
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Semi-magic Squares

Observations by Regge (1950s):

Domain of cm,n,k(i , j)

The domain space for Clebsch-Gordan coefficients may be parametrized by
the set of semi-magic squares of size three.

Regge Symmetries

The symmetry group of these matrices has order 72:
generated by row/column switches and transpose.

Clebsch-Gordan coefficents transform well under these symmetries.

In normalized picture, scale by factor of (−1)N for some N.
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Motivating Questions:

1. How much of the theory is tensor products and how much is
combinatorics?

That is, are tensor products in this case an application of a purely
combinatorial theory?

2. If so, is there a corresponding “Clebsch-Gordan coefficient” theory for
general finite G?

Not in the sense of tensors, but permutation polytopes and semi-magic
squares.

First step: need to understand how semi-magic matrices/squares work.
So much of this talk is surveying.
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Semi-Magic Matrices and Semi-Magic Squares

Definition

M in M(n,C) is called a semi-magic matrix with line sum L if the sum
along every row or column is L.

Define MM(n) to be the set of all semi-magic matrices of size n.

Variations:
1 Semi-magic squares M(n): coefficients in N

2 Doubly stochastic: coefficients in 0 ≤ x ≤ 1, L = 1.
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Example: Permutation matrices

Let P(n) be the group of n × n matrices with entries

exactly one 1 in each row and column, and

0 otherwise.

P(n) ∼= Sn and |P(n)| = n!

PTP = PPT = I

det(P) = ±1

semi-magic matrix with line sum 1, and

if M =
∑

xiPi then M is a semi-magic matrix with line sum
∑

xi .

Birkhoff (1946): Polytope of DS matrices equals the convex hull of P(n).
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Example: Circulant matrices

Let Z (n) be the subgroup of n × n matrices in P(n) with entries

all 1 along some“diagonal” to the right, and

0 otherwise.

Suppose R = (123 . . . n) is the element whose“diagonal” starts in the
second entry of the first column. Then R generates all elements of Z (n).

Of course, Rn = I and Z (n) ∼= Z/n.

Example: R = (1234) in Z (4)


0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

 ,


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 ,


0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

 ,


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 .
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Example: Circulant matrices

Circulant matrices

Let Circ(n) be the commutative algebra generated by R in Z (n).

That is, elements of Circ(n) are linear combinations of the linearly
independent matrices I ,R,R2, . . .Rn−1.

Circ(3) =

c1 c2 c3
c3 c1 c2
c2 c3 c1

 , L = c1 + c2 + c3

Basic Counting Problem: With coefficients in N,
how many elements of Circ(n) have line sum L?

Solution: Identify c0I + c1R + · · ·+ cn−1R
n−1 with (c0, c1, . . . , cn−1).

Place L balls into n distinct boxes, giving

(
L + n − 1

L

)
squares.

Robert W. Donley, Jr. (CUNY-QCC) An intertwining operator for dihedral groups July 24, 2020 9 / 38



Combinatorial Observations

Binomial coefficient as polynomial in L of degree n − 1

Hn(L) =

(
L + n − 1

L

)
=

(L + n − 1)(L + n − 2) . . . (L + 1)

(n − 1)!

Generating Function: Binomial series∑
L≥0

Hn(L) zL =
1

(1− z)n

Combinatorial Reciprocity:

Hn(−L) = (−1)n−1 Hn(L− n)

and
Hn(−1) = Hn(−2) = . . . = Hn(−n + 1) = 0.
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Three approaches to semi-magic matrices/squares:

combinatorics/ combinatorial number theory
(counting the size of M(n) with fixed line sum L)

McMahon (1916); Stanley; DeLoera, and many others

linear algebraic approaches
(MM(n) as a Lie algebra/Jordan algebra)
Boukas, Feinsilver, Fellouris (2015)

Our approach: the group algebra C[G ]
1 Wedderburn’s Theorem for semi-simple algebras over C
2 group actions.
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Linear Algebra - Vector Spaces

If Mi is in MM(n) with line sum Li then

M1 + M2 is semi-magic with line sum L1 + L2, and

cM1 is semi-magic with line sum cLi .

So MM(n) is a vector space over C.

Dimension of MM(n)

dim MM(n) = (n − 1)2 + 12

P(n) spans MM(n), but is not a basis.

(n − 1)2 + 1 < n! for n ≥ 3.
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Linear Algebra - Dimensions

Dimension of MM(n)

dim MM(n) = (n − 1)2 + 12

For the subspace with L = 0 (actually a simple ideal),
a basis is given by the (n − 1)2 linearly independent vectors:

0 0 0 0
0 1 0 −1
0 0 0 0

0 −1 0 1



For the extra dimension, we can use

identity In with L = 1, or

Jn (all 1s) with L = n.
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Eigenvector Formulation

Let u1 = (1, 1, . . . , 1)T in Cn. (column vector)

Alternative formulation

M is row stochastic with line sum L if and only if Mu1 = Lu1.
That is, u1 is an eigenvector of M with eigenvalue L.

Alternative formulation

M is column stochastic with line sum L if and only if MTu1 = Lu1.
That is, u1 is an eigenvector of MT with eigenvalue L.

Alternative formulation

M is a semi-magic matrix with line sum L if and only if

Mu1 = MTu1 = Lu1.

That is, u1 is an eigenvector of both M and MT with eigenvalue L.
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Multiplication

Proposition

Suppose Mi are row stochastic with line sums Li .
Then M1M2 is also row stochastic with line sum L1L2.

Proof: M1M2u1 = M1L2u1 = L2M1u1 = L1L2u1. QED

Note that if Mi are instead column stochastic, then
(M1M2)T = MT

2 MT
1 is row stochastic with line sum L1L2.

Conclusions:

the product of two semi-magic matrices is also semi-magic,

the line sum map M 7→ LM is a linear character L : MM(n)→ C, and

if G is a subgroup of P(n),
then products of linear combinations of G are LCs of G .
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Main Example: G = D2n

12

3 4

1

2

3

4

5

1

12

3 4

1

2

3

4

5

1

Vertices and orientation for D8 and D10
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Four Pictures for D2n

symmetries of regular polygon with n sides,

as a subgroup of Sn: permutations of the vertices,

R = (12...n), C = (1n)(2 n − 1) . . .

as a subgroup of permutation matrices, and

finite presentation:

|R| = n, |C | = 2, CRC = R−1.

With 0 ≤ k < n, every element is of the form

Rk (rotation), or

CRk (reflection).
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Z (n) ⊂ D2n ⊆ Sn as P(n)

The element C is chosen as reflection across the x-axis.

Multiply by C on left: invert columns, and

multiply by C on right: invert rows.

With this choice, all reflections CRk are (−1)-circulant.
That is, constant along diagonals to the left.

C CR CR2 CR3
0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 ,


0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1

 ,


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 ,


1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

 .
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Two Themes for the Remainder:

D2n = Z (n) ∪ CZ (n)

M(D2n) = SpanN(D2n) (monoid)

MM(D2n) = SpanC(D2n) (algebra)

Formula for counting elements in M(D2n) with fixed line sum L.

Basic structure of MM(D2n) as an extension of Circ(n).
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Group Algebras

Assume G is a subgroup of P(n) ∼= Sn.

The group algebra of G

Define C[G ] to be the vector space with basis {eh}h∈G .
Define multiplication in C[G ] by extending eg · eh = egh.

Of course, dim C[G ] = |G |.
Consider the map of algebras, extending

Φ : C[G ]→ MM(G ) ⊂ MM(n)

Φ(eh) = h.

Example: G = Z (n): Linear independence of {I ,R, . . . ,Rn−1}

Φ : C[Z (n)]
∼−→ Circ(n)
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Example: G = D6 = S3
∼= P(3)

If G = D6, then Φ is surjective but not injective to MM(3).
By linear algebra, P(3) is a linearly dependent set with dependence relation

I + R + R2 − C − CR − CR2 = 0.1 0 0
0 1 0
0 0 1

+

0 0 1
1 0 0
0 1 0

+

0 1 0
0 0 1
1 0 0

 =

1 1 1
1 1 1
1 1 1

 .
0 0 1

0 1 0
1 0 0

+

0 1 0
1 0 0
0 0 1

+

1 0 0
0 0 1
0 1 0

 =

1 1 1
1 1 1
1 1 1

 .
dim C[S3] = 6 = 1 + 5 = dim Ker Φ + dim MM(3)
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Counting: n odd

Define
χdet : D2n → C∗, χdet(P) = det(P).

Then Ker(Φ) is the span of the element in C[D2n]:∑
P∈D2n

χdet(P) eP .

In plain language, this says, in MM(D2n),∑
rotations =

∑
reflections

or ∑
circulant =

∑
(−1)-circulant.
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Counting: n odd

Model: order rotations before reflections as Pi .

Then we may consider semi-magic squares in M(D2n) as 2n-tuples of
natural numbers∑

ciPi 7→ (c1, . . . , cn, cn+1, . . . , c2n)

subject to the relation

v + (1, 1, . . . , 1, 0, 0, . . . , 0) = v + (0, 0, . . . , 0, 1, 1, . . . , 1).

Then each semi-magic square is uniquely represented by 2n-tuple with at
least one zero in the first n entries.
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Counting: n odd

Theorem (D.-Ravi)

Suppose n is odd.
The number of semi-magic squares in M(D2n) with line sum L equals

HD2n(L) =

(
L + 2n − 1

L

)
−
(
L + n − 1

L

)
.

The corresponding generating function is

Fn(x) =
∑
L≥0

HD2n(L) xL =
1− xn

(1− x)2n

Proof: Distribute L balls to 2n boxes for first term.
For uniqueness, remove all 2n-tuples of the form

(1, 1, . . . , 1, 0, 0, . . . , 0) + (c1, . . . , c2n). �
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Counting: n = 2m even

We now have four characters: triv , det, sgn, sgn · det
Now Ker(Φ) is the span of two elements in C[D2n]:∑

P∈D2n

χ(P) eP ,

where χ is det and another non-trivial character (parity of m).

In plain language, these reduce to four groupings,∑
R2k =

∑
CR2k+1

and ∑
R2k+1 =

∑
CR2k .
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Counting: n = 2m even

Checkerboards with n = 4:
1 0 1 0
0 1 0 1
1 0 1 0
0 1 0 1

 = C ·


0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0




0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

 = C ·


1 0 1 0
0 1 0 1
1 0 1 0
0 1 0 1
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Counting: n = 2m even

Theorem (D.-Ravi)

Suppose n = 2m.
The number of semi-magic squares in M(D2n) with line sum L has
generating function

Fn(x) =
(1− xm)2

(1− x)2n
.

Proof: 4m-tuples, 4 segments

(c1, . . . , cm | cm+1, . . . , c2m ||c2m+1, . . . , c3m | c3m+1, . . . , c4m)

Uniqueness: move 1s between segments 1 and 2 only, 3 and 4 only.
Then

HD2n(L) =
L∑

k=0

hn(k)hn(L− k),

where hn(L) is the formula for the odd case, but allowing n even.

Discrete convolution → multiply generating functions. �
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Combinatorial Reciprocity

Other counting formulas for D2n using polytope theory:
Burggraf et al. (2013), Baumeister et al. (2014)

Corollary

For n odd (resp. even),

HD2n(L) is a polynomial in L with degree 2n − 2 (resp. 2n − 3),

HD2n(−L) = (−1)n−1HD2n(L− n), and

HD2n(−1) = HD2n(−2) = · · · = HD2n(−n + 1) = 0.

This result is the D2n-analogue of the Anand-Dumir-Gupta Conjecture,
proven by Stanley in the 1970s.

G = Sn: Explicit polynomials for M(n) are known only up to n = 9.
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Algebras: Intertwining Operator Φ

On C[G ], G × G acts by

(h1, h2) · eP = eh1Ph−1
2
.

On MM(G ), G × G acts by

(h1, h2) · P = h1Ph
−1
2 .

So Φ intertwines the G × G -actions:

(h1, h2) · Φ(eP) = h1Ph
−1
2 = Φ((h1, h2) · eP).
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Algebras: Intertwining Operator Φ

With π ranging over a complete set of irreducibles,

C[G ] ∼=
⊕
π

Vπ ⊗ V ∗π

as representations of G × G . So

C[G ] ∼= Ker(Φ)⊕MM(G ).

Multiplicity one means the items on the left are determined by checking if
π occurs in the defining permutation representation ρ.
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Basic Case: Orthogonal idempotents for Circ(n)

Here Φ is an isomorphism.

Describe Im(Φ) = Circ(n) via Z (n)× Z (n).

Z (n) is cyclic (abelian)
→ simultaneously diagonalize to get OIs.

All irreducibles are characters.
Let ω = e2πi/n. Fix 0 ≤ k < n. Then

χk(R) = ωk

is a character of Z (n).
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Projection formula Pχ : Circ(n)→ Circ(n)χ

Pχ(v) =
1

|G |
∑
h∈G

χ(h) π(h)v → Pχ(M) =
1

n

∑
h∈Z(n)

χ(h) hM

Examples: n = 3, M = I → Orthogonal idempotents

χ0(R) = 1 : 1

1 0 0
0 1 0
0 0 1

+ 1

0 0 1
1 0 0
0 1 0

+ 1

0 1 0
0 0 1
1 0 0

 =

1 1 1
1 1 1
1 1 1



χ1(R) = ω : 1

1 0 0
0 1 0
0 0 1

+ω2

0 0 1
1 0 0
0 1 0

+ω

0 1 0
0 0 1
1 0 0

 =

 1 ω ω2

ω2 1 ω
ω ω2 1


χ2(R) = ω2 : 1

1 0 0
0 1 0
0 0 1

+ω

0 0 1
1 0 0
0 1 0

+ω2

0 1 0
0 0 1
1 0 0

 =

 1 ω2 ω
ω 1 ω2

ω2 ω 1
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Orthogonal Idempotents for Circ(3)

General: Top line is χk(R i ) = ωik (0 ≤ i < n)

U0 =
1

3

1 1 1
1 1 1
1 1 1

 , U1 =
1

3

 1 ω ω2

ω2 1 ω
ω ω2 1

 , U2 =
1

3

 1 ω2 ω
ω 1 ω2

ω2 ω 1


Using 1 + ω + ω2 = 0,

Orthogonal Idempotents Pi(M) = UiM

U2
i = Ui , UiUj = 0 (i 6= j)

U0 + U1 + U2 = I

Circ(3) = CU0 ⊕ CU1 ⊕ CU2
∼=

∗ 0 0
0 ∗ 0
0 0 ∗
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Examples: G = P(n) ∼= Sn
1 Φ has a large kernel (n! > (n − 1)2 + 1) but is surjective,

2 the permutation representation has two components (12 + (n − 1)2),
and

3 the orthogonal idempotents are relatively easy: J = all 1s

JM = MJ = LJ, J2 = nJ → e1 =
1

n
J, e2 = I − 1

n
J

Orthogonal Idempotents

e1 + e2 = I , e1 · e2 = 0, e2i = ei

4 {L = 0} is a simple ideal in MM(n) with dimension (n − 1)2.

MM(n) = CJ ⊕ {L = 0} ∼=

L 0 0
0 ∗ ∗
0 ∗ ∗
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Example: D2n (n odd)

Character table for D2n (n odd)

D2n e R±1 R±2 . . . C

|Cσ| 1 2 2 . . . n

χtriv 1 1 1 . . . 1
χdet 1 1 1 . . . −1
π2 2 2 cos(2πn ) 2 cos(4πn ) . . . 0

ρ n 0 0 . . . 1

There are n−1
2 conjugacy classes of type R±k .

With 2 ≤ j ≤ n−1
2 and homomorphisms

φj : D2n → D2n : R 7→ R j , C 7→ C ,

Other characters → π2,j = π2 ◦ φj → 2 cos(2jπn ).
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Ker(Φ) and MM(D2n)

By orthogonality of characters, as representations of D2n × D2n,

Ker(Φ) contains one constituent, of type χdet ⊗ χ∗det ,

MM(D2n) contains a trivial type and one for each π2,j ⊗ π∗2,j

Define ct = cos(2πtn ). Then the orthogonal idempotent for π2,j is given by

U2,j = P2,j(I ) =
1

2n

n−1∑
k=0

2cjk Rk =
1

n


1 cj c2j c3j . . .
cj 1 cj c2j . . .
c2j cj 1 cj . . .
c3j c2j cj 1 . . .
. . .
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Orthogonal Idempotents

U2,j =
1

n


1 cj c2j c3j . . .
cj 1 cj c2j . . .
c2j cj 1 cj . . .
c3j c2j cj 1 . . .
. . .


Things worth noting:

1 with 1
nJ, the U2,j form a complete set of OIs for MM(D2n),

2 each U2,j is symmetric and circulant (as a sum of circulants),

3 each U2,j is semi-magic with line sum 0,

4 each U2,j is the real part of an orthogonal idempotent for Circ(n),

5 the imaginary parts are also interesting.

1 +ω+ · · ·+ωn−1 = 0 → 1 + cos(2π/n) + · · ·+ cos(2π(n− 1)/n) = 0
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Thank you!
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