An intertwining operator for dihedral groups

Robert W. Donley, Jr. (CUNY-QCC)

July 24, 2020

Table of Contents:

(1) Preamble: Clebsch-Gordan cofficients
(2) Semi-magic matrices and semi-magic squares
(3) Counting semi-magic squares
(3) Algebras and Orthogonal Idempotents

Joint work with M. S. Ravi

Motivation

$V(m)$ irreducible $S U(2)$-module over \mathbb{C}
Clebsch-Gordan Decomposition (Vector Space Level)

$$
V(m) \otimes V(n) \cong V(|m-n|) \oplus \cdots \oplus V(m+n-2) \oplus V(m+n)
$$

Choosing a basis without normalizing (no radicals):
Clebsch-Gordan Coefficients (Vector Level)

$$
c_{m, n, k}(i, j)=\sum_{s=0}^{k}(-1)^{s}\binom{i+j-k}{i-s}\binom{m-s}{k-s}\binom{n-k+s}{s}
$$

Semi-magic Squares

Observations by Regge (1950s):

Domain of $c_{m, n, k}(i, j)$

The domain space for Clebsch-Gordan coefficients may be parametrized by the set of semi-magic squares of size three.

Regge Symmetries

The symmetry group of these matrices has order 72: generated by row/column switches and transpose.

Clebsch-Gordan coefficents transform well under these symmetries. In normalized picture, scale by factor of $(-1)^{N}$ for some N.

Motivating Questions:

1. How much of the theory is tensor products and how much is combinatorics?

That is, are tensor products in this case an application of a purely combinatorial theory?
2. If so, is there a corresponding "Clebsch-Gordan coefficient" theory for general finite G ?

Not in the sense of tensors, but permutation polytopes and semi-magic squares.

First step: need to understand how semi-magic matrices/squares work. So much of this talk is surveying.

Semi-Magic Matrices and Semi-Magic Squares

Definition

M in $M(n, \mathbb{C})$ is called a semi-magic matrix with line sum L if the sum along every row or column is L.

Define $M M(n)$ to be the set of all semi-magic matrices of size n.

Variations:

(1) Semi-magic squares $\mathbb{M}(n)$: coefficients in \mathbb{N}
(2) Doubly stochastic: coefficients in $0 \leq x \leq 1, \quad L=1$.

Example: Permutation matrices

Let $P(n)$ be the group of $n \times n$ matrices with entries

- exactly one 1 in each row and column, and
- 0 otherwise.
- $P(n) \cong S_{n}$ and $|P(n)|=n$!
- $P^{T} P=P P^{T}=1$
- $\operatorname{det}(P)= \pm 1$
- semi-magic matrix with line sum 1 , and
- if $M=\sum x_{i} P_{i}$ then M is a semi-magic matrix with line sum $\sum x_{i}$.

Birkhoff (1946): Polytope of DS matrices equals the convex hull of $P(n)$.

Example: Circulant matrices

Let $Z(n)$ be the subgroup of $n \times n$ matrices in $P(n)$ with entries

- all 1 along some "diagonal" to the right, and
- 0 otherwise.

Suppose $R=(123 \ldots n)$ is the element whose "diagonal" starts in the second entry of the first column. Then R generates all elements of $Z(n)$.
Of course, $R^{n}=I$ and $Z(n) \cong \mathbb{Z} / n$.

Example: $R=(1234)$ in $Z(4)$

$$
\left[\begin{array}{llll}
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right],\left[\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right],\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0
\end{array}\right],\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] .
$$

Example: Circulant matrices

Circulant matrices

Let $\operatorname{Circ}(n)$ be the commutative algebra generated by R in $Z(n)$.
That is, elements of $\operatorname{Circ}(n)$ are linear combinations of the linearly independent matrices $I, R, R^{2}, \ldots R^{n-1}$.

$$
\operatorname{Circ}(3)=\left[\begin{array}{lll}
c_{1} & c_{2} & c_{3} \\
c_{3} & c_{1} & c_{2} \\
c_{2} & c_{3} & c_{1}
\end{array}\right], \quad L=c_{1}+c_{2}+c_{3}
$$

Basic Counting Problem: With coefficients in \mathbb{N}, how many elements of $\operatorname{Circ}(n)$ have line sum L?

Solution: Identify $c_{0} I+c_{1} R+\cdots+c_{n-1} R^{n-1}$ with $\left(c_{0}, c_{1}, \ldots, c_{n-1}\right)$.
Place L balls into n distinct boxes, giving $\binom{L+n-1}{L}$ squares.

Combinatorial Observations

Binomial coefficient as polynomial in L of degree $n-1$

$$
H_{n}(L)=\binom{L+n-1}{L}=\frac{(L+n-1)(L+n-2) \ldots(L+1)}{(n-1)!}
$$

- Generating Function: Binomial series

$$
\sum_{L \geq 0} H_{n}(L) z^{L}=\frac{1}{(1-z)^{n}}
$$

- Combinatorial Reciprocity:

$$
H_{n}(-L)=(-1)^{n-1} H_{n}(L-n)
$$

and

$$
H_{n}(-1)=H_{n}(-2)=\ldots=H_{n}(-n+1)=0
$$

Three approaches to semi-magic matrices/squares:

- combinatorics/ combinatorial number theory (counting the size of $\mathbb{M}(n)$ with fixed line sum L)

McMahon (1916); Stanley; DeLoera, and many others

- linear algebraic approaches
$(M M(n)$ as a Lie algebra/Jordan algebra)
Boukas, Feinsilver, Fellouris (2015)
- Our approach: the group algebra $\mathbb{C}[G]$
(1) Wedderburn's Theorem for semi-simple algebras over \mathbb{C}
(2) group actions.

Linear Algebra - Vector Spaces

If M_{i} is in $M M(n)$ with line sum L_{i} then

- $M_{1}+M_{2}$ is semi-magic with line sum $L_{1}+L_{2}$, and
- $c M_{1}$ is semi-magic with line sum $c L_{i}$.

So $M M(n)$ is a vector space over \mathbb{C}.

Dimension of $M M(n)$

$$
\operatorname{dim} M M(n)=(n-1)^{2}+1^{2}
$$

$P(n)$ spans $M M(n)$, but is not a basis.

$$
(n-1)^{2}+1<n!\quad \text { for } \quad n \geq 3
$$

Linear Algebra - Dimensions

Dimension of $M M(n)$

$$
\operatorname{dim} M M(n)=(n-1)^{2}+1^{2}
$$

For the subspace with $L=0 \quad$ (actually a simple ideal), a basis is given by the $(n-1)^{2}$ linearly independent vectors:

$$
\left[\begin{array}{rrr|r}
0 & 0 & 0 & 0 \\
0 & 1 & 0 & -1 \\
0 & 0 & 0 & 0 \\
\hline 0 & -1 & 0 & 1
\end{array}\right]
$$

For the extra dimension, we can use

- identity I_{n} with $L=1$, or
- J_{n} (all 1s) with $L=n$.

Eigenvector Formulation

Let $u_{1}=(1,1, \ldots, 1)^{T}$ in \mathbb{C}^{n}. (column vector)

Alternative formulation

M is row stochastic with line sum L if and only if $M u_{1}=L u_{1}$.
That is, u_{1} is an eigenvector of M with eigenvalue L.

Alternative formulation

M is column stochastic with line sum L if and only if $M^{T} u_{1}=L u_{1}$. That is, u_{1} is an eigenvector of M^{T} with eigenvalue L.

Alternative formulation

M is a semi-magic matrix with line sum L if and only if

$$
M u_{1}=M^{T} u_{1}=L u_{1} .
$$

That is, u_{1} is an eigenvector of both M and M^{T} with eigenvalue L.

Multiplication

Proposition

Suppose M_{i} are row stochastic with line sums L_{i}.
Then $M_{1} M_{2}$ is also row stochastic with line sum $L_{1} L_{2}$.
Proof: $M_{1} M_{2} u_{1}=M_{1} L_{2} u_{1}=L_{2} M_{1} u_{1}=L_{1} L_{2} u_{1} . \quad$ QED

Note that if M_{i} are instead column stochastic, then $\left(M_{1} M_{2}\right)^{T}=M_{2}^{T} M_{1}^{T}$ is row stochastic with line sum $L_{1} L_{2}$.

Conclusions:

- the product of two semi-magic matrices is also semi-magic,
- the line sum map $M \mapsto L_{M}$ is a linear character $L: M M(n) \rightarrow \mathbb{C}$, and
- if G is a subgroup of $P(n)$, then products of linear combinations of G are LCs of G.

Main Example: $G=D_{2 n}$

Vertices and orientation for D_{8} and D_{10}

Four Pictures for $D_{2 n}$

- symmetries of regular polygon with n sides,
- as a subgroup of S_{n} : permutations of the vertices,

$$
R=(12 \ldots n), \quad C=(1 n)(2 n-1) \ldots
$$

- as a subgroup of permutation matrices, and
- finite presentation:

$$
|R|=n, \quad|C|=2, \quad C R C=R^{-1}
$$

With $0 \leq k<n$, every element is of the form

- R^{k} (rotation), or
- $C R^{k}$ (reflection).

$Z(n) \subset D_{2 n} \subseteq S_{n}$ as $P(n)$

The element C is chosen as reflection across the x-axis.

- Multiply by C on left: invert columns, and
- multiply by C on right: invert rows.

With this choice, all reflections $C R^{k}$ are (-1)-circulant.
That is, constant along diagonals to the left.

$$
\left.\begin{array}{c}
c \\
{\left[\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right],}
\end{array} \begin{array}{cccc}
C R & C R^{2} & C R^{3} \\
{\left[\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right],}
\end{array} \begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right],\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0
\end{array}\right] .
$$

Two Themes for the Remainder:

$$
\begin{gathered}
D_{2 n}=Z(n) \cup C Z(n) \\
\mathbb{M}\left(D_{2 n}\right)=\operatorname{Span}_{\mathbb{N}}\left(D_{2 n}\right) \quad \text { (monoid) } \\
M M\left(D_{2 n}\right)=\operatorname{Span}_{\mathbb{C}}\left(D_{2 n}\right) \quad \text { (algebra) }
\end{gathered}
$$

- Formula for counting elements in $\mathbb{M}\left(D_{2 n}\right)$ with fixed line sum L.
- Basic structure of $M M\left(D_{2 n}\right)$ as an extension of $\operatorname{Circ}(n)$.

Group Algebras

Assume G is a subgroup of $P(n) \cong S_{n}$.
The group algebra of G
Define $\mathbb{C}[G]$ to be the vector space with basis $\left\{e_{h}\right\}_{h \in G}$. Define multiplication in $\mathbb{C}[G]$ by extending $e_{g} \cdot e_{h}=e_{g h}$.

Of course, $\operatorname{dim} \mathbb{C}[G]=|G|$.
Consider the map of algebras, extending

$$
\begin{gathered}
\Phi: \mathbb{C}[G] \rightarrow M M(G) \subset M M(n) \\
\Phi\left(e_{h}\right)=h .
\end{gathered}
$$

Example: $G=Z(n)$: Linear independence of $\left\{I, R, \ldots, R^{n-1}\right\}$

$$
\Phi: \mathbb{C}[Z(n)] \xrightarrow{\sim} \operatorname{Circ}(n)
$$

Example: $G=D_{6}=S_{3} \cong P(3)$

If $G=D_{6}$, then Φ is surjective but not injective to $M M(3)$.
By linear algebra, $P(3)$ is a linearly dependent set with dependence relation

$$
\begin{gathered}
I+R+R^{2}-C-C R-C R^{2}=0 . \\
{\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]+\left[\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]+\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right]=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right] .} \\
{\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right]+\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]+\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right] .} \\
\operatorname{dim} \mathbb{C}\left[S_{3}\right]=6=1+5=\operatorname{dim} \operatorname{Ker} \Phi+\operatorname{dim} M M(3)
\end{gathered}
$$

Counting: n odd

Define

$$
\chi_{\operatorname{det}}: D_{2 n} \rightarrow \mathbb{C}^{*}, \quad \chi_{\operatorname{det}}(P)=\operatorname{det}(P)
$$

Then $\operatorname{Ker}(\Phi)$ is the span of the element in $\mathbb{C}\left[D_{2 n}\right]$:

$$
\sum_{P \in D_{2 n}} \chi_{d e t}(P) e_{P}
$$

In plain language, this says, in $M M\left(D_{2 n}\right)$,

$$
\sum \text { rotations }=\sum \text { reflections }
$$

or

$$
\sum \text { circulant }=\sum(-1) \text {-circulant. }
$$

Counting: n odd

Model: order rotations before reflections as P_{i}.
Then we may consider semi-magic squares in $\mathbb{M}\left(D_{2 n}\right)$ as $2 n$-tuples of natural numbers

$$
\sum c_{i} P_{i} \quad \mapsto \quad\left(c_{1}, \ldots, c_{n}, c_{n+1}, \ldots, c_{2 n}\right)
$$

subject to the relation

$$
v+(1,1, \ldots, 1,0,0, \ldots, 0)=v+(0,0, \ldots, 0,1,1, \ldots, 1)
$$

Then each semi-magic square is uniquely represented by $2 n$-tuple with at least one zero in the first n entries.

Counting: n odd

Theorem (D.-Ravi)

Suppose n is odd.
The number of semi-magic squares in $\mathbb{M}\left(D_{2 n}\right)$ with line sum L equals

$$
H_{D_{2 n}}(L)=\binom{L+2 n-1}{L}-\binom{L+n-1}{L} .
$$

The corresponding generating function is

$$
F_{n}(x)=\sum_{L \geq 0} H_{D_{2 n}}(L) x^{L}=\frac{1-x^{n}}{(1-x)^{2 n}}
$$

Proof: Distribute L balls to $2 n$ boxes for first term.
For uniqueness, remove all $2 n$-tuples of the form

$$
(1,1, \ldots, 1,0,0, \ldots, 0)+\left(c_{1}, \ldots, c_{2 n}\right) . \quad \square
$$

Counting: $n=2 m$ even

We now have four characters: triv, det, sgn, sgn • det Now $\operatorname{Ker}(\Phi)$ is the span of two elements in $\mathbb{C}\left[D_{2 n}\right]$:

$$
\sum_{P \in D_{2 n}} \chi(P) e_{P}
$$

where χ is det and another non-trivial character (parity of m). In plain language, these reduce to four groupings,

$$
\sum R^{2 k}=\sum C R^{2 k+1}
$$

and

$$
\sum R^{2 k+1}=\sum C R^{2 k}
$$

Counting: $n=2 m$ even

Checkerboards with $n=4$:

$$
\begin{aligned}
& {\left[\begin{array}{llll}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1
\end{array}\right]=C \cdot\left[\begin{array}{llll}
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0
\end{array}\right]} \\
& {\left[\begin{array}{llll}
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0
\end{array}\right]=C \cdot\left[\begin{array}{llll}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1
\end{array}\right]}
\end{aligned}
$$

Counting: $n=2 m$ even

Theorem (D.-Ravi)

Suppose $n=2 m$.
The number of semi-magic squares in $\mathbb{M}\left(D_{2 n}\right)$ with line sum L has generating function

$$
F_{n}(x)=\frac{\left(1-x^{m}\right)^{2}}{(1-x)^{2 n}}
$$

Proof: $4 m$-tuples, 4 segments

$$
\left(c_{1}, \ldots, c_{m}\left|c_{m+1}, \ldots, c_{2 m} \| c_{2 m+1}, \ldots, c_{3 m}\right| c_{3 m+1}, \ldots, c_{4 m}\right)
$$

Uniqueness: move 1 s between segments 1 and 2 only, 3 and 4 only. Then

$$
H_{D_{2 n}}(L)=\sum_{k=0}^{L} h_{n}(k) h_{n}(L-k)
$$

where $h_{n}(L)$ is the formula for the odd case, but allowing n even.
Discrete convolution \rightarrow multiply generating functions,

Combinatorial Reciprocity

Other counting formulas for $D_{2 n}$ using polytope theory: Burggraf et al. (2013), Baumeister et al. (2014)

Corollary

- For n odd (resp. even),
$H_{D_{2 n}}(L)$ is a polynomial in L with degree $2 n-2$ (resp. $2 n-3$),
- $H_{D_{2 n}}(-L)=(-1)^{n-1} H_{D_{2 n}}(L-n)$, and
- $H_{D_{2 n}}(-1)=H_{D_{2 n}}(-2)=\cdots=H_{D_{2 n}}(-n+1)=0$.

This result is the $D_{2 n}$-analogue of the Anand-Dumir-Gupta Conjecture, proven by Stanley in the 1970s.
$G=S_{n}: \quad$ Explicit polynomials for $\mathbb{M}(n)$ are known only up to $n=9$.

Algebras: Intertwining Operator Φ

On $\mathbb{C}[G]$,
 $G \times G$ acts by

$$
\left(h_{1}, h_{2}\right) \cdot e_{P}=e_{h_{1} P h_{2}^{-1}} .
$$

On $M M(G), \quad G \times G$ acts by

$$
\left(h_{1}, h_{2}\right) \cdot P=h_{1} P h_{2}^{-1} .
$$

So Φ intertwines the $G \times G$-actions:

$$
\left(h_{1}, h_{2}\right) \cdot \Phi\left(e_{P}\right)=h_{1} P h_{2}^{-1}=\Phi\left(\left(h_{1}, h_{2}\right) \cdot e_{P}\right) .
$$

Algebras: Intertwining Operator Φ

With π ranging over a complete set of irreducibles,

$$
\mathbb{C}[G] \cong \bigoplus_{\pi} V_{\pi} \otimes V_{\pi}^{*}
$$

as representations of $G \times G$. So

$$
\mathbb{C}[G] \cong \operatorname{Ker}(\Phi) \oplus M M(G)
$$

Multiplicity one means the items on the left are determined by checking if π occurs in the defining permutation representation ρ.

Basic Case: Orthogonal idempotents for $\operatorname{Circ}(n)$

Here Φ is an isomorphism.
Describe $\operatorname{Im}(\Phi)=\operatorname{Circ}(n)$ via $Z(n) \times Z(n)$.
$Z(n)$ is cyclic (abelian)
\rightarrow simultaneously diagonalize to get Ols.
All irreducibles are characters.
Let $\omega=e^{2 \pi i / n}$. Fix $0 \leq k<n$. Then

$$
\chi_{k}(R)=\omega^{k}
$$

is a character of $Z(n)$.

Projection formula $\quad P_{\chi}: \operatorname{Circ}(n) \rightarrow \operatorname{Circ}(n)_{\chi}$

$$
P_{\chi}(v)=\frac{1}{|G|} \sum_{h \in G} \overline{\chi(h)} \pi(h) v \quad \rightarrow \quad P_{\chi}(M)=\frac{1}{n} \sum_{h \in Z(n)} \overline{\chi(h)} h M
$$

Examples: $n=3, M=I \rightarrow$ Orthogonal idempotents

$$
\begin{aligned}
& \chi_{0}(R)=1: 1\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]+1\left[\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]+1\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right]=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right] \\
& \chi_{1}(R)=\omega: 1\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]+\omega^{2}\left[\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]+\omega\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right]=\left[\begin{array}{ccc}
1 & \omega & \omega^{2} \\
\omega^{2} & 1 & \omega \\
\omega & \omega^{2} & 1
\end{array}\right] \\
& \chi_{2}(R)=\omega^{2}: 1\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]+\omega\left[\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]+\omega^{2}\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right]=\left[\begin{array}{ccc}
1 & \omega^{2} & \omega \\
\omega & 1 & \omega^{2} \\
\omega^{2} & \omega & 1
\end{array}\right]
\end{aligned}
$$

Orthogonal Idempotents for Circ(3)

General: Top line is $\chi_{k}\left(R^{i}\right)=\omega^{i k} \quad(0 \leq i<n)$

$$
U_{0}=\frac{1}{3}\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right], \quad U_{1}=\frac{1}{3}\left[\begin{array}{ccc}
1 & \omega & \omega^{2} \\
\omega^{2} & 1 & \omega \\
\omega & \omega^{2} & 1
\end{array}\right], \quad U_{2}=\frac{1}{3}\left[\begin{array}{ccc}
1 & \omega^{2} & \omega \\
\omega & 1 & \omega^{2} \\
\omega^{2} & \omega & 1
\end{array}\right]
$$

Using $1+\omega+\omega^{2}=0$,
Orthogonal Idempotents $\quad P_{i}(M)=U_{i} M$

$$
\begin{gathered}
U_{i}^{2}=U_{i}, \quad U_{i} U_{j}=0(i \neq j) \\
U_{0}+U_{1}+U_{2}=1
\end{gathered}
$$

$$
\operatorname{Circ}(3)=\mathbb{C} U_{0} \oplus \mathbb{C} U_{1} \oplus \mathbb{C} U_{2} \cong\left[\begin{array}{lll}
* & 0 & 0 \\
0 & * & 0 \\
0 & 0 & *
\end{array}\right]
$$

Examples: $G=P(n) \cong S_{n}$

(1) Φ has a large kernel $\left(n!>(n-1)^{2}+1\right)$ but is surjective,
(2) the permutation representation has two components $\left(1^{2}+(n-1)^{2}\right)$, and
(3) the orthogonal idempotents are relatively easy: $J=$ all 1 s

$$
J M=M J=L J, \quad J^{2}=n J \quad \rightarrow \quad e_{1}=\frac{1}{n} J, \quad e_{2}=I-\frac{1}{n} J
$$

Orthogonal Idempotents

$$
e_{1}+e_{2}=l, \quad e_{1} \cdot e_{2}=0, \quad e_{i}^{2}=e_{i}
$$

(9) $\{L=0\}$ is a simple ideal in $M M(n)$ with dimension $(n-1)^{2}$.

$$
M M(n)=\mathbb{C} J \oplus\{L=0\} \cong\left[\begin{array}{lll}
L & 0 & 0 \\
0 & * & * \\
0 & * & *
\end{array}\right]
$$

Example: $D_{2 n}(n$ odd $)$

Character table for $D_{2 n}$ (n odd)

$D_{2 n}$	e	$R^{ \pm 1}$	$R^{ \pm 2}$	\cdots	C
$\left\|C_{\sigma}\right\|$	1	2	2	\cdots	n
$\chi_{\text {triv }}$	1	1	1	\cdots	1
$\chi_{\text {det }}$	1	1	1	\cdots	-1
π_{2}	2	$2 \cos \left(\frac{2 \pi}{n}\right)$	$2 \cos \left(\frac{4 \pi}{n}\right)$	\cdots	0
ρ	n	0	0	\cdots	1

There are $\frac{n-1}{2}$ conjugacy classes of type $R^{ \pm k}$.
With $2 \leq j \leq \frac{n-1}{2}$ and homomorphisms

$$
\phi_{j}: D_{2 n} \rightarrow D_{2 n}: \quad R \mapsto R^{j}, \quad C \mapsto C
$$

Other characters $\rightarrow \pi_{2, j}=\pi_{2} \circ \phi_{j} \rightarrow 2 \cos \left(\frac{2 j \pi}{n}\right)$.

$\operatorname{Ker}(\Phi)$ and $M M\left(D_{2 n}\right)$

By orthogonality of characters, as representations of $D_{2 n} \times D_{2 n}$,

- $\operatorname{Ker}(\Phi)$ contains one constituent, of type $\chi_{\text {det }} \otimes \chi_{\text {det }}^{*}$,
- $M M\left(D_{2 n}\right)$ contains a trivial type and one for each $\pi_{2, j} \otimes \pi_{2, j}^{*}$

Define $c_{t}=\cos \left(\frac{2 \pi t}{n}\right)$. Then the orthogonal idempotent for $\pi_{2, j}$ is given by

$$
U_{2, j}=P_{2, j}(I)=\frac{1}{2 n} \sum_{k=0}^{n-1} 2 c_{j k} R^{k}=\frac{1}{n}\left[\begin{array}{ccccc}
1 & c_{j} & c_{2 j} & c_{3 j} & \ldots \\
c_{j} & 1 & c_{j} & c_{2 j} & \ldots \\
c_{2 j} & c_{j} & 1 & c_{j} & \ldots \\
c_{3 j} & c_{2 j} & c_{j} & 1 & \ldots \\
\ldots & & & &
\end{array}\right]
$$

Orthogonal Idempotents

$$
U_{2, j}=\frac{1}{n}\left[\begin{array}{ccccc}
1 & c_{j} & c_{2 j} & c_{3 j} & \ldots \\
c_{j} & 1 & c_{j} & c_{2 j} & \ldots \\
c_{2 j} & c_{j} & 1 & c_{j} & \ldots \\
c_{3 j} & c_{2 j} & c_{j} & 1 & \cdots \\
\cdots & & & &
\end{array}\right]
$$

Things worth noting:
(1) with $\frac{1}{n} J$, the $U_{2, j}$ form a complete set of Ols for $M M\left(D_{2 n}\right)$,
(2) each $U_{2, j}$ is symmetric and circulant (as a sum of circulants),
(3) each $U_{2, j}$ is semi-magic with line sum 0 ,
(9) each $U_{2, j}$ is the real part of an orthogonal idempotent for $\operatorname{Circ}(n)$,
(5) the imaginary parts are also interesting.

$$
1+\omega+\cdots+\omega^{n-1}=0 \quad \rightarrow \quad 1+\cos (2 \pi / n)+\cdots+\cos (2 \pi(n-1) / n)=0
$$

Thank you!

