Algebraic aspects of magic matrices and semi-magic squares

Robert W. Donley, Jr. (CUNY-QCC)

March 13, 2020

Preamble:

Stony Brook Ph.D. written qualifier preparation question (1990s)
(1) Find the characteristic and minimal polynomials of the following matrix U. Find bases for the eigenspaces.

$$
U=\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{array}\right]
$$

(2) Repeat for the matrix

$$
U^{\prime}=\left[\begin{array}{llll}
0 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 \\
1 & 1 & 1 & 0
\end{array}\right]
$$

Solution to 1:

$$
\text { RREF : } \quad U=\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

(1) $\lambda=0$:
($1,-1,0,0$),
$(1,0,-1,0)$,
$(1,0,0,-1)$
(2) $\lambda=4$:
$(1,1,1,1)$

$$
U^{2}=\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{array}\right]^{2}=4 U
$$

(1) $m_{U}(x)=x(x-4)$
(2) $p_{U}(x)=x^{3}(x-4)$

Table of Contents:

(1) Definitions
(2) Eigenvector Approach
(3) Wedderburn's Theorem
(9) Examples
(5) Characters and Projection Formula
(0) Orthogonal Idempotents

Joint work with M. S. Ravi

Definitions

For clarity, we only consider matrices with coefficients in \mathbb{N} or \mathbb{C}

Definition

We say M in $M(n, \mathbb{C})$ is row stochastic with line sum r if the sum along any row is r.

Likewise, define the notion of column stochastic with line sum c.

Magic matrices

Definition

M in $M(n, \mathbb{C})$ is called a magic matrix with line sum r if the sum along every row or column is r.
Define $M M(n)$ to be the set of all magic matrices of size n..
Note: If M is

- row stochastic with line sum r and
- column stochastic with line sum c then $r=c$.

Proof: $n r=n c$ implies $r=c$.

Variations:

(1) Semi-magic squares $\mathbb{M}(n)$: coefficients in \mathbb{N}
(2) Doubly stochastic: coefficients in $0 \leq x \leq 1, r=c=1$.

Example: Permutation matrices

Let $P(n)$ be the group of $n \times n$ matrices with entries

- exactly one 1 in each row and column, and
- 0 otherwise.
- $P(n) \cong S_{n}$ and $|P(n)|=n$!
- $P^{T} P=P P^{T}=1$
- $\operatorname{det}(P)= \pm 1$
- magic matrix with line sum 1 , and
- if $M=\sum x_{i} P_{i}$ then M is a magic matrix with line sum $\sum x_{i}$.

Birkhoff (1946): Polytope of DS matrices equals the convex hull of $P(n)$.

Example: Circulant matrices

Let $Z(n)$ be the subgroup of $n \times n$ matrices in $P(n)$ with entries

- all 1 along some "diagonal" to the right, and
- 0 otherwise.

Suppose $R=(123 \ldots n)$ is the element whose "diagonal" starts in the second entry of the first column. Then R generates all elements of $Z(n)$. Of course, $R^{n}=I$ and $Z(n) \cong \mathbb{Z} / n$.

Example: $R=(123), R^{2}=(132), R^{3}=I$ in $Z(3)$

$$
\left[\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right],\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right],\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Example: Circulant matrices

Circulant matrices

Let $C(n)$ be the commutative algebra generated by R in $Z(n)$.
That is, elements of $C(n)$ are linear combinations of the linearly independent matrices $I, R, R^{2}, \ldots R^{n-1}$.

$$
C(3)=\left[\begin{array}{lll}
a & b & c \\
c & a & b \\
b & c & a
\end{array}\right] .
$$

Basic Counting Problem: With coefficients in \mathbb{N}, how many elements of $C(n)$ have line sum L ?

Solution: Identify $c_{0} I+c_{1} R+\cdots+c_{n-1} R^{n-1}$ with ($c_{0}, c_{1}, \ldots, c_{n-1}$).
Place L balls into n distinct boxes, giving $\binom{L+n-1}{L}$ squares.

Three approaches:

- combinatorics/ combinatorial number theory (counting the size of $\mathbb{M}(n, r)$)

McMahon (1916); Stanley; DeLoera, and many others

- linear algebraic approaches $(M M(n)$ as a Lie algebra/Jordan algebra)
Boukas, Feinsilver, Fellouris (2015)
- Our approach: the group algebra $\mathbb{C}[G]$
(1) Wedderburn's Theorem for semi-simple algebras over \mathbb{C}
(2) group actions.

Linear Algebra - Vector Spaces

If M_{i} is in $M M(n)$ with line sum L_{i} then

- $M_{1}+M_{2}$ is row stochastic with line sum $L_{1}+L_{2}$, and
- $c M_{1}$ is row stochastic with line sum $c L_{i}$.

So $M M(n)$ is a vector space over \mathbb{C}.

Linear Algebra - Dimensions

$$
\operatorname{dim} M M(n)=(n-1)^{2}+1^{2}
$$

Example : $\operatorname{dim} M M(3)=4+1=5$

$$
\left[\begin{array}{ccc}
a & b & L-a-b \\
c & d & L-c-d \\
L-a-c & L-b-d & a+b+c+d-L
\end{array}\right]
$$

Note:

$$
(L-a-b)+(L-c-d)=(L-a-c)+(L-b-d)
$$

Note:

$$
(n-1)^{2}+1 \leq n!\text { for } n \geq 1
$$

$P(n)$ spans $M M(n)$, but is not a basis. (More later)

Eigenvector Formulation

Let $u_{1}=(1,1, \ldots, 1)^{T}$ in \mathbb{C}^{n}. (column vector)

Alternative formulation

M is row stochastic with line sum L if and only if $M u_{1}=L u_{1}$.
That is, u_{1} is an eigenvector of M with eigenvalue L.

Alternative formulation

M is column stochastic with line sum L if and only if $M^{T} u_{1}=L u_{1}$. That is, u_{1} is an eigenvector of M^{T} with eigenvalue L.

Alternative formulation

M is a magic matrix with line sum L if and only if

$$
M u_{1}=M^{T} u_{1}=L u_{1} .
$$

That is, u_{1} is an eigenvector of both M and M^{T} with eigenvalue L.

Multiplication

Proposition

Suppose M_{i} are row stochastic with line sums L_{i}.
Then $M_{1} M_{2}$ is also row stochastic with line sum $L_{1} L_{2}$.
Proof: $M_{1} M_{2} u_{1}=M_{1} L_{2} u_{1}=L_{2} M_{1} u_{1}=L_{1} L_{2} u_{1} . \quad$ QED

Note that if M_{i} are instead column stochastic, then $\left(M_{1} M_{2}\right)^{T}=M_{2}^{T} M_{1}^{T}$ is row stochastic with line sum $L_{1} L_{2}$.

Conclusions:

- the product of two magic matrices is also magic,
- the line sum map $M \mapsto L_{M}$ is a linear character $L: M M(n) \rightarrow \mathbb{C}$, and
- if H is a subgroup of $P(n)$, then the algebra generated by H is a subalgebra of $M M(n)$.

Wedderburn's Theorem

```
Definition
If H}\mathrm{ is a subgroup of }P(n)\cong\mp@subsup{S}{n}{}\mathrm{ , then
define }M\mp@subsup{M}{H}{}(n)\mathrm{ to be the algebra generated by H in MM(n).
```


Wedderburn's Theorem

If A is a semisimple algebra over \mathbb{C} of finite dimension, then

$$
A \cong \bigoplus_{i} M\left(n_{i}, \mathbb{C}\right)
$$

Consequences:
(1) Interpret: there exists a basis such the elements of A are represented simultaneously by block diagonal matrices,
(2) Main Problem 1: identify the block sizes n_{i}.
(3) Main Problem 2: identify the orthogonal idempotents of A.

Group Algebras

Assume H is a subgroup of $P(n) \cong S_{n}$.
The group algebra of H
Define $\mathbb{C}[H]$ to be the vector space with basis $\left\{e_{h}\right\}_{h \in H}$. Define multiplication in $\mathbb{C}[H]$ by extending $e_{g} \cdot e_{h}=e_{g h}$.

Of course, $\operatorname{dim} \mathbb{C}[H]=|H|$.
Consider the map of algebras, extending

$$
\begin{gathered}
\Phi: \mathbb{C}[H] \rightarrow M M_{H}(n) \subset M M(n) \\
\Phi\left(e_{h}\right)=h .
\end{gathered}
$$

Example: $H=Z(n)$: Linear independence of $\left\{I, R, \ldots, R^{n-1}\right\}$

$$
\Phi: \mathbb{C}[Z(n)] \xrightarrow{\sim} C(n)
$$

Orthogonal idempotents for $C(n)$

One strategy: $Z(n)$ is cyclic (abelian)
\rightarrow simultaneously diagonalize to get Ols.
Net effect: representation theory (more features)

Definition

A character of $Z(n)$ is a group homomorphism $\chi: Z(n) \rightarrow \mathbb{C}^{*}$.
Example (all): Let $\omega=e^{2 \pi i / n}$. Fix $0 \leq k<n$. Then

$$
\chi_{k}(R)=\omega^{k}
$$

is a character of $Z(n)$.
Note:

$$
|\chi(x)|=1, \quad \overline{\chi_{k}}=\chi_{-k}, \quad \chi_{k} \cdot \chi_{k^{\prime}}=\chi_{k+k^{\prime}}
$$

Orthogonal Relations for $Z(n)$

Orthogonality Relations for $Z(n)$

$$
\frac{1}{|H|} \sum_{h \in H} \chi_{k}(h) \overline{\chi_{k^{\prime}}(h)}= \begin{cases}1 & k=k^{\prime} \\ 0 & \text { otherwise }\end{cases}
$$

Proof: If $k=k^{\prime}$, clear.
If not,

$$
\chi_{k}(h) \overline{\chi_{k^{\prime}}(h)}=\chi_{k-k^{\prime}}(h),
$$

a non-trivial character.
So consider instead some χ with $\chi(x) \neq 1$. Set $S=\sum_{h} \chi(h)$.

$$
\chi(x) S=\chi(x) \sum_{h \in H} \chi(h)=\sum_{h \in H} \chi(x h)=\sum_{h^{\prime} \in H} \chi\left(h^{\prime}\right)=S
$$

Since $\chi(x) \neq 1, S=0$.

Representations of $Z(n)$

Let V be a finite-dimensional vector space over \mathbb{C}, and define $G L(V)$ to be the set of invertible linear transformations $V \rightarrow V$.

Representation

A representation π of $Z(n)$ is a group homomorphism $\pi: Z(n) \rightarrow G L(V)$.
"Group action by linear transformations"

Full Reducibility to Characters

Every representation of $Z(n)$ may be diagonalized;
that is, there exists a basis such that

$$
\pi(h)=\left[\begin{array}{ccc}
\chi_{(}(h) & 0 & 0 \\
0 & \chi_{2}(h) & 0 \\
0 & 0 & \chi_{3}(h)
\end{array}\right]
$$

Projection formula $\quad P_{\chi}: M M(n) \rightarrow M M(n)_{\chi}$

$$
P_{\chi}(v)=\frac{1}{|H|} \sum_{h \in H} \overline{\chi(h)} \pi(h) v \quad \rightarrow \quad P_{\chi}(M)=\frac{1}{n} \sum_{h \in Z(n)} \overline{\chi(h)} h M
$$

Examples: $n=3, M=I \rightarrow$ Orthogonal idempotents

$$
\begin{aligned}
& \chi_{0}(R)=1: 1\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]+1\left[\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]+1\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right]=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right] \\
& \chi_{1}(R)=\omega: 1\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]+\omega^{2}\left[\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]+\omega\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right]=\left[\begin{array}{ccc}
1 & \omega & \omega^{2} \\
\omega^{2} & 1 & \omega \\
\omega & \omega^{2} & 1
\end{array}\right] \\
& \chi_{2}(R)=\omega^{2}: 1\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]+\omega\left[\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]+\omega^{2}\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right]=\left[\begin{array}{ccc}
1 & \omega^{2} & \omega \\
\omega & 1 & \omega^{2} \\
\omega^{2} & \omega & 1
\end{array}\right]
\end{aligned}
$$

Orthogonal Idempotents for $C(3)$

$$
U_{0}=\frac{1}{3}\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right], U_{1}=\frac{1}{3}\left[\begin{array}{ccc}
1 & \omega & \omega^{2} \\
\omega^{2} & 1 & \omega \\
\omega & \omega^{2} & 1
\end{array}\right], \quad U_{2}=\frac{1}{3}\left[\begin{array}{ccc}
1 & \omega^{2} & \omega \\
\omega & 1 & \omega^{2} \\
\omega^{2} & \omega & 1
\end{array}\right]
$$

Using $1+\omega+\omega^{2}=0$,
Orthogonal Idempotents $\quad P_{i}(M)=U_{i} M$

$$
\begin{gathered}
U_{i}^{2}=U_{i}, \quad U_{i} U_{j}=0(i \neq j) \\
U_{0}+U_{1}+U_{2}=1
\end{gathered}
$$

$$
C(3)=\mathbb{C} U_{0} \oplus \mathbb{C} U_{1} \oplus \mathbb{C} U_{2} \cong\left[\begin{array}{lll}
* & 0 & 0 \\
0 & * & 0 \\
0 & 0 & *
\end{array}\right]
$$

General $Z(n)$: Top line is $\chi_{k}\left(R^{i}\right)=\omega^{i k}$

$$
(0 \leq i<n)
$$

Group actions for General Case:

There are two group actions of H on the vector spaces $\mathbb{C}[H]$ and $M M(n)$, respected by Φ; for instance, for all g in H,

$$
\begin{aligned}
& \mathcal{L}(g) \Phi=\Phi \mathcal{L}(g) \\
& \mathcal{L}(g) e_{h}=e_{g h} \mapsto \\
& \mathcal{R}(g) e_{h}=e_{h g}(g) M=g M \\
& \mapsto \\
& \mathcal{R}(g) M=M g^{-1}
\end{aligned}
$$

Example: In $C(3)$, we have the further identities

$$
\begin{gathered}
\mathcal{L}(R) U_{0}=U_{0}=\chi_{0}(R) U_{0} \\
\mathcal{L}(R) U_{1}=\omega U_{1}=\chi_{1}(R) U_{1} \\
\mathcal{L}(R) U_{2}=\omega^{2} U_{2}=\chi_{2}(R) U_{2}
\end{gathered}
$$

That is, these orthogonal idempotents provide the basis that diagonalizes the group action in this case.

Projection formula (reprise):

Suppose \mathcal{L} is in diagonal form already,

$$
\begin{aligned}
3 P_{\chi}=\sum_{h} \overline{\chi(h)} \mathcal{L}(h) & =\sum_{h} \overline{\chi(h)}\left[\begin{array}{ccc}
\chi(h) & 0 & 0 \\
0 & \chi_{2}(h) & 0 \\
0 & 0 & \chi_{3}(h)
\end{array}\right] \\
& =\sum_{h}\left[\begin{array}{ccc}
\chi(h) \overline{\chi(h)} & 0 & 0 \\
0 & \chi_{2}(h) \overline{\chi(h)} & 0 \\
0 & 0 & \chi_{3}(h) \overline{\chi(h)}
\end{array}\right] \\
& =\left[\begin{array}{lll}
3 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

Examples: $H=P(n) \cong S_{n}$

(1) D has a large kernel $\left(n!>(n-1)^{2}+1\right)$ but is surjective,
(3) the image has two blocks $\left(1^{2}+(n-1)^{2}\right)$, and
(0) the orthogonal idempotents are relatively easy: $U^{2}=n U$

$$
e_{1}=\frac{1}{n} U, \quad e_{2}=I-\frac{1}{n} U
$$

Orthogonal Idempotents

$$
e_{1}+e_{2}=l, \quad e_{1} \cdot e_{2}=0, \quad e_{i}^{2}=e_{i}
$$

(0) Elements of $M M(n)$ with $L=0$ have dimension $(n-1)^{2}$.

$$
M M(n)=\mathbb{C} U \oplus\{L=0\} \cong\left[\begin{array}{lll}
L & 0 & 0 \\
0 & * & * \\
0 & * & *
\end{array}\right]
$$

Example: $H=P(3) \cong S_{3}$

If $H=S_{3}$, then Φ is surjective but not injective.
By linear algebra, $P(3)$ is a linearly dependent set with dependence relation

$$
\begin{gathered}
I+R+R^{2}-C-C R-C R^{2}=0 . \\
{\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]+\left[\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]+\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right]=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right]} \\
{\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right]+\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]+\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right] .} \\
\operatorname{dim} \mathbb{C}\left[S_{3}\right]=6=1+5=\operatorname{dim} \operatorname{Ker} \Phi+\operatorname{dim} M M(3)
\end{gathered}
$$

Basic Counting Problem in $M M(3)(1916)$

To count elements with coefficients in \mathbb{N} with line sum L, we are considering elements of $\mathbb{C}[H]$ mod the dependence relation, or

$$
\sum a_{h} e_{h} \mapsto\left(a_{e}, a_{R}, a_{R^{2}}, a_{C}, a_{C R}, a_{C R^{2}}\right) \in \mathbb{N}^{6}
$$

\bmod the relation $(1,1,1,0,0,0)=(0,0,0,1,1,1)$.
Each element is now represented uniquely by a 6-tuple with sum L and such that a 0 occurs in the one of the last three entries.

$$
H_{3}(L)=\binom{L+6-1}{L}-\binom{(L-3)+6-1}{L-3} .
$$

First term: L balls into 6 boxes
Second term: $L-3$ balls into 6 boxes of this type ($0,0,0,1,1,1$)

Example: Characters of S_{3}

The (one-dimensional) characters of S_{3} are
(1) the trivial character $\chi=1$ (contributes U)
(2) determinant as $P(3)$, or sgn as permutation.

Visually

$$
\Phi:\left[\begin{array}{llll}
* & & & \\
& * & & \\
& & * & * \\
& & * & *
\end{array}\right] \rightarrow\left[\begin{array}{lll}
* & & \\
& * & * \\
& * & *
\end{array}\right]
$$

In this case, the kernel is the idempotent in $\mathbb{C}\left[S_{3}\right]$ associated to sgn:

$$
e_{I}+e_{R}+e_{R^{2}}-e_{C}-e_{C R}-e_{C R^{2}}
$$

Characters for Non-abelian Groups

To access the 2×2 block:
Machinery from before still holds if we define the character of the representation π by

General character

$$
\chi_{\pi}(h)=\operatorname{Trace}(\pi(h))
$$

This is a function on H, but not a homomorphism in general.
Example: For the 2-dimensional representation of S_{3} on \mathbb{C}^{2} (induced from triangle in \mathbb{R}^{2})

$$
\chi_{\pi}(I)=2, \quad \chi_{\pi}\left(C R^{i}\right)=0, \quad \chi_{\pi}\left(R^{i}\right)=-1
$$

Projections for Non-abelian Groups

We apply the same projection formula to get orthogonal idempotents in MM(3) :

$$
\begin{gathered}
U_{\text {triv }}=\frac{1}{3}\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right], \quad U_{\pi}=\frac{1}{3}\left[\begin{array}{rrr}
2 & -1 & -1 \\
-1 & 2 & -1 \\
-1 & -1 & 2
\end{array}\right] \\
U_{\text {triv }}^{2}=U_{\text {triv }}, \quad U_{\pi}^{2}=U_{\pi}, \quad U_{\text {triv }} U_{\pi}=0 \\
U_{\text {triv }}+U_{\pi}=l
\end{gathered}
$$

The four dimensional space is given by $U_{\pi} M M(3)=M M(3) U_{\pi}$, or $L=0$ as seen before.

Example: Dihedral groups

Let $D_{2 n}$ be the union of all elements of $Z(n)$ and the corresponding matrices with "diagonals" to the left.

$$
\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right], C=\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right],\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right] .
$$

With matrix multiplication, this set is isomorphic to the symmetry group of the regular n-gon. $\quad\left(P=P^{T}\right.$ if and only if $\left.P^{2}=l.\right)$

Magic matrices associated to $D_{2 n}$

Let $D(n)$ be the non-commutative algebra generated by $D_{2 n}$ in $M M(n)$. That is, elements of $D(n)$ are linear combinations of the $2 n$-elements

$$
R^{j}, \quad C R^{k} \quad(1 \leq j, k \leq n)
$$

Basic Counting Problem: DeLoera et al (2013)

Example: D_{8}

Consider

$$
D(4)=M M_{D_{8}}(4) \subset M M(4),
$$

where $D_{8} \subset S_{4}$ is realized as symmetries of the square.
In this case, we shall see

Conjugacy classes and $\mathbb{C}\left[D_{8}\right]$

Conjugacy Classes

The center of $\mathbb{C}[H]$ is spanned by sums over conjugacy classes. Thus the number of blocks equals the number of conjugacy classes.

Proof: Let C_{x} be the conjugacy class for x in H.
Then $\sum_{h \in C_{x}} e_{h}$ is clearly in the center of $\mathbb{C}[H]$.
Conversely, if $\sum c_{x} e_{x}$ is in the center, then

$$
\sum c_{x} e_{x}=e_{g}\left(\sum c_{x} e_{x}\right) e_{g-1}=\sum c_{g-1 \times g} e_{x} .
$$

Thus c_{X} is constant on conjugacy classes of H.

Conjugacy Classes and Blocks

Conjugacy classes for D_{8} :
(1) e
(2) R^{2}
(3) $\left\{R, R^{3}\right\}$,
(9) $\left\{C, C R^{2}\right\}$
(6) $\left\{C R, C R^{3}\right\}$

First, this verifies the block count, noting D_{8} is non-abelian:

$$
8=1^{2}+1^{2}+1^{2}+1^{2}+2^{2}
$$

Character Table for D_{8}

Next, since Φ is surjective onto $D(4)$, it carries the center of $\mathbb{C}\left[D_{8}\right]$ into the center of $D(4)$.

D_{8}	e	R^{2}	R, R^{3}	$C, C R^{2}$	$C R, C R^{3}$
$\chi_{\text {triv }}$	1	1	1	1	1
$\chi_{\text {det }}$	1	1	1	-1	-1
$\chi_{\text {sgn }}$	1	1	-1	-1	1
$\chi_{\text {sgn }} \cdot \chi_{\text {det }}$	1	1	-1	1	-1
π_{2}	2	-2	0	0	0

The characters yield the following matrices under P_{χ} :
$\frac{1}{4}\left[\begin{array}{llll}1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1\end{array}\right], 0, \frac{1}{4}\left[\begin{array}{rrrr}1 & -1 & 1 & -1 \\ -1 & 1 & -1 & 1 \\ 1 & -1 & 1 & -1 \\ -1 & 1 & -1 & 1\end{array}\right], 0, \frac{1}{2}\left[\begin{array}{rrrr}1 & 0 & -1 & 0 \\ 0 & 1 & 0 & -1 \\ -1 & 0 & 1 & 0 \\ 0 & -1 & 0 & 1\end{array}\right]$

Orthogonal Idempotents

One verifies $U^{2}=U, \quad U_{1} U_{2}=0$, and

$$
U_{\text {triv }}+U_{\text {sgn }}+U_{\pi_{2}}=I .
$$

In particular, the latter item implies that $D(4)$ has three blocks and dimension 6.

Relations for counting problem

Note: There are two relations from the kernel of Φ :

$$
\begin{aligned}
& I+R+R^{2}+R^{3}-C-C R-C R^{2}-C R^{3}=0 \\
& I-R+R^{2}-R^{3}+C-C R+C R^{2}-C R^{3}=0
\end{aligned}
$$

or

$$
\begin{aligned}
& I+R^{2}=C\left(R+R^{3}\right)=\left[\begin{array}{llll}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1
\end{array}\right] \\
& R+R^{3}=C\left(I+R^{2}\right)=\left[\begin{array}{llll}
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0
\end{array}\right]
\end{aligned}
$$

General $D_{2 n}$ and $D(n)$

n odd:
(1) 2 one-dimensional characters;
(2) one relation for counting from det,
(3) one dimensional block corresponds to U (all 1s), else size 2
(4) Generating function for counting is

$$
\frac{1-x^{n}}{(1-x)^{2 n}}
$$

$n=2 m$ even:
(1) 4 one-dimensional characters;
(2) two relations for counting (checkerboards),
(3) two one-dimensional blocks in $D(n)$, else size 2
(9) Generating function for counting is

$$
\frac{\left(1-x^{m}\right)^{2}}{(1-x)^{2 n}}
$$

