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Preamble:

Stony Brook Ph.D. written qualifier preparation question (1990s)

1 Find the characteristic and minimal polynomials of the following
matrix U. Find bases for the eigenspaces.

U =


1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1


2 Repeat for the matrix

U ′ =


0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0



Robert W. Donley, Jr. (CUNY-QCC) Algebraic aspects of magic matrices and semi-magic squares March 13, 2020 2 / 37



Solution to 1:

RREF : U =


1 1 1 1
0 0 0 0
0 0 0 0
0 0 0 0


1 λ = 0 : (1,−1, 0, 0), (1, 0,−1, 0), (1, 0, 0,−1)

2 λ = 4 : (1, 1, 1, 1)

U2 =


1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1


2

= 4U

1 mU(x) = x(x − 4)

2 pU(x) = x3(x − 4)
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Definitions

For clarity, we only consider matrices with coefficients in N or C

Definition

We say M in M(n,C) is row stochastic with line sum r
if the sum along any row is r .

Likewise, define the notion of column stochastic with line sum c .
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Magic matrices

Definition

M in M(n,C) is called a magic matrix with line sum r if the sum along
every row or column is r .

Define MM(n) to be the set of all magic matrices of size n..

Note: If M is

row stochastic with line sum r and

column stochastic with line sum c

then r = c .

Proof: nr = nc implies r = c .

Variations:
1 Semi-magic squares M(n): coefficients in N
2 Doubly stochastic: coefficients in 0 ≤ x ≤ 1, r = c = 1.
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Example: Permutation matrices

Let P(n) be the group of n × n matrices with entries

exactly one 1 in each row and column, and

0 otherwise.

P(n) ∼= Sn and |P(n)| = n!

PTP = PPT = I

det(P) = ±1

magic matrix with line sum 1, and

if M =
∑

xiPi then M is a magic matrix with line sum
∑

xi .

Birkhoff (1946): Polytope of DS matrices equals the convex hull of P(n).
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Example: Circulant matrices

Let Z (n) be the subgroup of n × n matrices in P(n) with entries

all 1 along some“diagonal” to the right, and

0 otherwise.

Suppose R = (123 . . . n) is the element whose“diagonal” starts in the
second entry of the first column. Then R generates all elements of Z (n).

Of course, Rn = I and Z (n) ∼= Z/n.

Example: R = (123), R2 = (132), R3 = I in Z (3)0 0 1
1 0 0
0 1 0

 ,
0 1 0

0 0 1
1 0 0

 ,
1 0 0

0 1 0
0 0 1

 .
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Example: Circulant matrices

Circulant matrices

Let C (n) be the commutative algebra generated by R in Z (n).

That is, elements of C (n) are linear combinations of the linearly
independent matrices I ,R,R2, . . .Rn−1.

C (3) =

a b c
c a b
b c a

 .
Basic Counting Problem: With coefficients in N,
how many elements of C (n) have line sum L?

Solution: Identify c0I + c1R + · · ·+ cn−1R
n−1 with (c0, c1, . . . , cn−1).

Place L balls into n distinct boxes, giving

(
L + n − 1

L

)
squares.
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Three approaches:

combinatorics/ combinatorial number theory
(counting the size of M(n, r))

McMahon (1916); Stanley; DeLoera, and many others

linear algebraic approaches
(MM(n) as a Lie algebra/Jordan algebra)
Boukas, Feinsilver, Fellouris (2015)

Our approach: the group algebra C[G ]
1 Wedderburn’s Theorem for semi-simple algebras over C
2 group actions.
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Linear Algebra - Vector Spaces

If Mi is in MM(n) with line sum Li then

M1 + M2 is row stochastic with line sum L1 + L2, and

cM1 is row stochastic with line sum cLi .

So MM(n) is a vector space over C.
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Linear Algebra - Dimensions

dim MM(n) = (n − 1)2 + 12

Example : dim MM(3) = 4 + 1 = 5

 a b L− a− b
c d L− c − d

L− a− c L− b − d a + b + c + d − L


Note:

(L− a− b) + (L− c − d) = (L− a− c) + (L− b − d)

Note:
(n − 1)2 + 1 ≤ n! for n ≥ 1.

P(n) spans MM(n), but is not a basis. (More later)
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Eigenvector Formulation

Let u1 = (1, 1, . . . , 1)T in Cn. (column vector)

Alternative formulation

M is row stochastic with line sum L if and only if Mu1 = Lu1.
That is, u1 is an eigenvector of M with eigenvalue L.

Alternative formulation

M is column stochastic with line sum L if and only if MTu1 = Lu1.
That is, u1 is an eigenvector of MT with eigenvalue L.

Alternative formulation

M is a magic matrix with line sum L if and only if

Mu1 = MTu1 = Lu1.

That is, u1 is an eigenvector of both M and MT with eigenvalue L.
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Multiplication

Proposition

Suppose Mi are row stochastic with line sums Li .
Then M1M2 is also row stochastic with line sum L1L2.

Proof: M1M2u1 = M1L2u1 = L2M1u1 = L1L2u1. QED

Note that if Mi are instead column stochastic, then
(M1M2)T = MT

2 MT
1 is row stochastic with line sum L1L2.

Conclusions:

the product of two magic matrices is also magic,

the line sum map M 7→ LM is a linear character L : MM(n)→ C, and

if H is a subgroup of P(n), then the algebra generated by H is a
subalgebra of MM(n).
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Wedderburn’s Theorem

Definition

If H is a subgroup of P(n) ∼= Sn, then
define MMH(n) to be the algebra generated by H in MM(n).

Wedderburn’s Theorem

If A is a semisimple algebra over C of finite dimension, then

A ∼=
⊕
i

M(ni ,C).

Consequences:

1 Interpret: there exists a basis such the elements of A are represented
simultaneously by block diagonal matrices,

2 Main Problem 1: identify the block sizes ni .

3 Main Problem 2: identify the orthogonal idempotents of A.
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Group Algebras

Assume H is a subgroup of P(n) ∼= Sn.

The group algebra of H

Define C[H] to be the vector space with basis {eh}h∈H .
Define multiplication in C[H] by extending eg · eh = egh.

Of course, dim C[H] = |H|.
Consider the map of algebras, extending

Φ : C[H]→ MMH(n) ⊂ MM(n)

Φ(eh) = h.

Example: H = Z (n): Linear independence of {I ,R, . . . ,Rn−1}

Φ : C[Z (n)]
∼−→ C (n)
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Orthogonal idempotents for C (n)

One strategy: Z (n) is cyclic (abelian)
→ simultaneously diagonalize to get OIs.

Net effect: representation theory (more features)

Definition

A character of Z (n) is a group homomorphism χ : Z (n)→ C∗.

Example (all): Let ω = e2πi/n. Fix 0 ≤ k < n. Then

χk(R) = ωk

is a character of Z (n).

Note:
|χ(x)| = 1, χk = χ−k , χk · χk ′ = χk+k ′
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Orthogonal Relations for Z (n)

Orthogonality Relations for Z (n)

1

|H|
∑
h∈H

χk(h) χk ′(h) =

{
1 k = k ′

0 otherwise

Proof: If k = k ′, clear.
If not,

χk(h) χk ′(h) = χk−k ′(h),

a non-trivial character.
So consider instead some χ with χ(x) 6= 1. Set S =

∑
h χ(h).

χ(x)S = χ(x)
∑
h∈H

χ(h) =
∑
h∈H

χ(xh) =
∑
h′∈H

χ(h′) = S .

Since χ(x) 6= 1, S = 0. �
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Representations of Z (n)

Let V be a finite-dimensional vector space over C, and
define GL(V ) to be the set of invertible linear transformations V → V .

Representation

A representation π of Z (n) is a group homomorphism π : Z (n)→ GL(V ).

“Group action by linear transformations”

Full Reducibility to Characters

Every representation of Z (n) may be diagonalized;
that is, there exists a basis such that

π(h) =

χ(h) 0 0
0 χ2(h) 0
0 0 χ3(h)

 .
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Projection formula Pχ : MM(n)→ MM(n)χ

Pχ(v) =
1

|H|
∑
h∈H

χ(h) π(h)v → Pχ(M) =
1

n

∑
h∈Z(n)

χ(h) hM

Examples: n = 3, M = I → Orthogonal idempotents

χ0(R) = 1 : 1

1 0 0
0 1 0
0 0 1

+ 1

0 0 1
1 0 0
0 1 0

+ 1

0 1 0
0 0 1
1 0 0

 =

1 1 1
1 1 1
1 1 1



χ1(R) = ω : 1

1 0 0
0 1 0
0 0 1

+ω2

0 0 1
1 0 0
0 1 0

+ω

0 1 0
0 0 1
1 0 0

 =

 1 ω ω2

ω2 1 ω
ω ω2 1


χ2(R) = ω2 : 1

1 0 0
0 1 0
0 0 1

+ω

0 0 1
1 0 0
0 1 0

+ω2

0 1 0
0 0 1
1 0 0

 =

 1 ω2 ω
ω 1 ω2

ω2 ω 1


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Orthogonal Idempotents for C (3)

U0 =
1

3

1 1 1
1 1 1
1 1 1

 , U1 =
1

3

 1 ω ω2

ω2 1 ω
ω ω2 1

 , U2 =
1

3

 1 ω2 ω
ω 1 ω2

ω2 ω 1


Using 1 + ω + ω2 = 0,

Orthogonal Idempotents Pi(M) = UiM

U2
i = Ui , UiUj = 0 (i 6= j)

U0 + U1 + U2 = I

C (3) = CU0 ⊕ CU1 ⊕ CU2
∼=

∗ 0 0
0 ∗ 0
0 0 ∗


General Z (n): Top line is χk(R i ) = ωik (0 ≤ i < n)
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Group actions for General Case:

There are two group actions of H on the vector spaces C[H] and MM(n),
respected by Φ; for instance, for all g in H,

L(g)Φ = ΦL(g)

L(g)eh = egh 7→ L(g)M = gM

R(g)eh = ehg−1 7→ R(g)M = Mg−1

Example: In C (3), we have the further identities

L(R)U0 = U0 = χ0(R)U0.

L(R)U1 = ωU1 = χ1(R)U1.

L(R)U2 = ω2U2 = χ2(R)U2.

That is, these orthogonal idempotents provide the basis that diagonalizes
the group action in this case.
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Projection formula (reprise):

Suppose L is in diagonal form already,

3Pχ =
∑
h

χ(h)L(h) =
∑
h

χ(h)

χ(h) 0 0
0 χ2(h) 0
0 0 χ3(h)


=
∑
h

χ(h)χ(h) 0 0

0 χ2(h)χ(h) 0

0 0 χ3(h)χ(h)


=

3 0 0
0 0 0
0 0 0


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Examples: H = P(n) ∼= Sn

1 Φ has a large kernel (n! > (n − 1)2 + 1) but is surjective,

2 the image has two blocks (12 + (n − 1)2), and

3 the orthogonal idempotents are relatively easy: U2 = nU

e1 =
1

n
U, e2 = I − 1

n
U

Orthogonal Idempotents

e1 + e2 = I , e1 · e2 = 0, e2i = ei

4 Elements of MM(n) with L = 0 have dimension (n − 1)2.

MM(n) = CU ⊕ {L = 0} ∼=

L 0 0
0 ∗ ∗
0 ∗ ∗


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Example: H = P(3) ∼= S3

If H = S3, then Φ is surjective but not injective.
By linear algebra, P(3) is a linearly dependent set with dependence relation

I + R + R2 − C − CR − CR2 = 0.1 0 0
0 1 0
0 0 1

+

0 0 1
1 0 0
0 1 0

+

0 1 0
0 0 1
1 0 0

 =

1 1 1
1 1 1
1 1 1

 .
0 0 1

0 1 0
1 0 0

+

0 1 0
1 0 0
0 0 1

+

1 0 0
0 0 1
0 1 0

 =

1 1 1
1 1 1
1 1 1

 .
dim C[S3] = 6 = 1 + 5 = dim Ker Φ + dim MM(3)
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Basic Counting Problem in MM(3) (1916)

To count elements with coefficients in N with line sum L,
we are considering elements of C[H] mod the dependence relation, or∑

aheh 7→ (ae , aR , aR2 , aC , aCR , aCR2) ∈ N6

mod the relation (1, 1, 1, 0, 0, 0) = (0, 0, 0, 1, 1, 1).

Each element is now represented uniquely by a 6-tuple with sum L and
such that a 0 occurs in the one of the last three entries.

H3(L) =

(
L + 6− 1

L

)
−
(

(L− 3) + 6− 1
L− 3

)
.

First term: L balls into 6 boxes
Second term: L− 3 balls into 6 boxes of this type (0, 0, 0, 1, 1, 1)
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Example: Characters of S3

The (one-dimensional) characters of S3 are

1 the trivial character χ = 1 (contributes U)

2 determinant as P(3), or sgn as permutation.

Visually

Φ :


∗
∗
∗ ∗
∗ ∗

→
∗ ∗ ∗

∗ ∗


In this case, the kernel is the idempotent in C[S3] associated to sgn:

eI + eR + eR2 − eC − eCR − eCR2
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Characters for Non-abelian Groups

To access the 2× 2 block:
Machinery from before still holds if we define the character of the
representation π by

General character

χπ(h) = Trace(π(h)).

This is a function on H, but not a homomorphism in general.

Example: For the 2-dimensional representation of S3 on C2

(induced from triangle in R2)

χπ(I ) = 2, χπ(CR i ) = 0, χπ(R i ) = −1
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Projections for Non-abelian Groups

We apply the same projection formula to get orthogonal idempotents in
MM(3) :

Utriv =
1

3

1 1 1
1 1 1
1 1 1

 , Uπ =
1

3

 2 −1 −1
−1 2 −1
−1 −1 2



U2
triv = Utriv , U2

π = Uπ, UtrivUπ = 0

Utriv + Uπ = I

The four dimensional space is given by UπMM(3) = MM(3)Uπ,
or L = 0 as seen before.
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Example: Dihedral groups

Let D2n be the union of all elements of Z (n) and the corresponding
matrices with “diagonals” to the left.0 1 0

1 0 0
0 0 1

 , C =

0 0 1
0 1 0
1 0 0

 ,
1 0 0

0 0 1
0 1 0

 .
With matrix multiplication, this set is isomorphic to the symmetry group
of the regular n-gon. (P = PT if and only if P2 = I .)

Magic matrices associated to D2n

Let D(n) be the non-commutative algebra generated by D2n in MM(n).
That is, elements of D(n) are linear combinations of the 2n-elements

R j , CRk (1 ≤ j , k ≤ n)

Basic Counting Problem: DeLoera et al (2013)
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Example: D8

Consider
D(4) = MMD8(4) ⊂ MM(4),

where D8 ⊂ S4 is realized as symmetries of the square.

In this case, we shall see

Φ :



∗
∗
∗
∗
∗ ∗
∗ ∗

→

∗
∗
∗ ∗
∗ ∗


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Conjugacy classes and C[D8]

Conjugacy Classes

The center of C[H] is spanned by sums over conjugacy classes.
Thus the number of blocks equals the number of conjugacy classes.

Proof: Let Cx be the conjugacy class for x in H.

Then
∑

h∈Cx
eh is clearly in the center of C[H].

Conversely, if
∑

cxex is in the center, then∑
cxex = eg (

∑
cxex)eg−1 =

∑
cg−1xgex .

Thus cx is constant on conjugacy classes of H. �
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Conjugacy Classes and Blocks

Conjugacy classes for D8:

1 e

2 R2

3 {R,R3},
4 {C ,CR2}
5 {CR,CR3}

First, this verifies the block count, noting D8 is non-abelian:

8 = 12 + 12 + 12 + 12 + 22
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Character Table for D8

Next, since Φ is surjective onto D(4), it carries the center of C[D8] into
the center of D(4).

D8 e R2 R,R3 C , CR2 CR, CR3

χtriv 1 1 1 1 1
χdet 1 1 1 −1 −1
χsgn 1 1 −1 −1 1

χsgn · χdet 1 1 −1 1 −1
π2 2 −2 0 0 0

The characters yield the following matrices under Pχ:

1

4


1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

 , 0,
1

4


1 −1 1 −1
−1 1 −1 1

1 −1 1 −1
−1 1 −1 1

 , 0,
1

2


1 0 −1 0
0 1 0 −1
−1 0 1 0

0 −1 0 1


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Orthogonal Idempotents

One verifies U2 = U, U1U2 = 0, and

Utriv + Usgn + Uπ2 = I .

In particular, the latter item implies that
D(4) has three blocks and dimension 6.
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Relations for counting problem

Note: There are two relations from the kernel of Φ:

I + R + R2 + R3 − C − CR − CR2 − CR3 = 0

I − R + R2 − R3 + C − CR + CR2 − CR3 = 0

or

I + R2 = C (R + R3) =


1 0 1 0
0 1 0 1
1 0 1 0
0 1 0 1



R + R3 = C (I + R2) =


0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0


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General D2n and D(n)
n odd:

1 2 one-dimensional characters;
2 one relation for counting from det,
3 one dimensional block corresponds to U (all 1s), else size 2
4 Generating function for counting is

1− xn

(1− x)2n

n = 2m even:

1 4 one-dimensional characters;
2 two relations for counting (checkerboards),
3 two one-dimensional blocks in D(n), else size 2
4 Generating function for counting is

(1− xm)2

(1− x)2n
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